Wang Qi, Zhang Jinhan, Niu Song, Fan Jinjin, Tang Shijun, Tang Shihong, Yin Ningkang, Liu Jingxuan, Li Mingmao
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Anhui Xinke New Materials Co., Ltd., Wuhu 241000, China.
Materials (Basel). 2025 Apr 9;18(8):1714. doi: 10.3390/ma18081714.
The traditional hot-dip tinning processes face challenges in controlling excessive copper dissolution and interfacial instability. This study involved designing a dissolution experiment using the hot-dip tin plating process. Through microscopic characterization and dissolution kinetics analysis, it systematically revealed the regulatory mechanism of trace Ni addition (0-0.5 wt.%) on the dissolution behavior and interfacial reaction of copper wire in a tin alloy melt. The experiment showed that Ni atoms formed a (Cu,Ni)Sn ternary phase by replacing Cu in the CuSn lattice, resulting in a transformation of the grain morphology of the IMC layer from equiaxed to fibrous. At the same time, the addition of Ni changed the kinetics of the interfacial reaction, effectively increasing the activation energy from 40.84 kJ/mol in the pure Sn system to 54.21 kJ/mol in the Sn-0.5Ni system, which extended the complete dissolution time of the copper wire at 573 K by three times.
传统的热浸镀锡工艺在控制过度的铜溶解和界面不稳定性方面面临挑战。本研究涉及使用热浸镀锡工艺设计一个溶解实验。通过微观表征和溶解动力学分析,系统地揭示了添加微量镍(0-0.5 wt.%)对铜丝在锡合金熔体中的溶解行为和界面反应的调控机制。实验表明,镍原子通过取代CuSn晶格中的Cu形成了(Cu,Ni)Sn三元相,导致IMC层的晶粒形态从等轴状转变为纤维状。同时,镍的添加改变了界面反应的动力学,有效地将活化能从纯锡体系中的40.84 kJ/mol提高到Sn-0.5Ni体系中的54.21 kJ/mol,这使得铜丝在573 K时的完全溶解时间延长了三倍。