Suppr超能文献

scSDNE:一种基于图嵌入推断细胞间相互作用的半监督方法。

scSDNE: A semi-supervised method for inferring cell-cell interactions based on graph embedding.

作者信息

Jia Chenchen, Wang Haiyun, Zhao Jianping, Xia Junfeng, Zheng Chunhou

机构信息

College of Mathematics and System Sciences, Xinjiang University, Urumqi, China.

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China.

出版信息

PLoS Comput Biol. 2025 May 7;21(5):e1013027. doi: 10.1371/journal.pcbi.1013027. eCollection 2025 May.

Abstract

As a fundamental characteristic of multicellular organisms, cell-cell communication is achieved through ligand-receptor (L-R) interactions, enabling the exchange of information and revealing the diversity of biological processes and cellular functions. To gain a comprehensive understanding of these complex interaction mechanisms, we constructed a manually curated L-R interaction database and developed a semi-supervised graph embedding model called scSDNE for inferring cell-cell interactions mediated by L-R interactions. scSDNE model utilizes the power of deep learning to map genes from interacting cells into a shared latent space, allowing for a nuanced representation of their relationships. Leveraging the prior information provided by database, scSDNE can infer significant L-R pairs involved in intercellular communication. Experiments on real single-cell RNA sequencing (scRNA-seq) datasets demonstrate that our method detects interactions with a high degree of reliability compared with other methods. More importantly, the model integrates gene regulation information within cells to enhance the accuracy and biological interpretability of the inferences. Our method provides a more comprehensive view of cell-cell interactions, offering new insights into complex intercellular communication.

摘要

作为多细胞生物的一个基本特征,细胞间通讯是通过配体-受体(L-R)相互作用实现的,这使得信息得以交换,并揭示了生物过程和细胞功能的多样性。为了全面了解这些复杂的相互作用机制,我们构建了一个人工整理的L-R相互作用数据库,并开发了一种名为scSDNE的半监督图嵌入模型,用于推断由L-R相互作用介导的细胞间相互作用。scSDNE模型利用深度学习的能力,将相互作用细胞中的基因映射到一个共享的潜在空间中,从而对它们的关系进行细致入微的表示。利用数据库提供的先验信息,scSDNE可以推断出参与细胞间通讯的重要L-R对。在真实的单细胞RNA测序(scRNA-seq)数据集上进行的实验表明,与其他方法相比,我们的方法能够以高度的可靠性检测相互作用。更重要的是,该模型整合了细胞内的基因调控信息,以提高推断的准确性和生物学可解释性。我们的方法提供了对细胞间相互作用更全面的视角,为复杂的细胞间通讯提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f5/12072665/0bde22769e09/pcbi.1013027.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验