School of Medicine, Tsinghua University, Beijing 100084, China.
MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad359.
Cell-cell communication events (CEs) are mediated by multiple ligand-receptor (LR) pairs. Usually only a particular subset of CEs directly works for a specific downstream response in a particular microenvironment. We name them as functional communication events (FCEs) of the target responses. Decoding FCE-target gene relations is: important for understanding the mechanisms of many biological processes, but has been intractable due to the mixing of multiple factors and the lack of direct observations. We developed a method HoloNet for decoding FCEs using spatial transcriptomic data by integrating LR pairs, cell-type spatial distribution and downstream gene expression into a deep learning model. We modeled CEs as a multi-view network, developed an attention-based graph learning method to train the model for generating target gene expression with the CE networks, and decoded the FCEs for specific downstream genes by interpreting trained models. We applied HoloNet on three Visium datasets of breast cancer and liver cancer. The results detangled the multiple factors of FCEs by revealing how LR signals and cell types affect specific biological processes, and specified FCE-induced effects in each single cell. We conducted simulation experiments and showed that HoloNet is more reliable on LR prioritization in comparison with existing methods. HoloNet is a powerful tool to illustrate cell-cell communication landscapes and reveal vital FCEs that shape cellular phenotypes. HoloNet is available as a Python package at https://github.com/lhc17/HoloNet.
细胞间通讯事件 (CEs) 是由多个配体-受体 (LR) 对介导的。通常只有特定的一组 CEs 直接作用于特定微环境中的特定下游反应。我们将它们命名为目标反应的功能通讯事件 (FCEs)。解码 FCE-靶基因关系对于理解许多生物过程的机制非常重要,但由于多种因素的混合和缺乏直接观察,一直难以解决。我们开发了一种使用空间转录组数据解码 FCE 的方法 HoloNet,该方法将 LR 对、细胞类型空间分布和下游基因表达整合到一个深度学习模型中。我们将 CEs 建模为多视图网络,开发了一种基于注意力的图学习方法来训练模型,以便使用 CE 网络生成目标基因表达,并通过解释训练模型来解码特定下游基因的 FCEs。我们将 HoloNet 应用于乳腺癌和肝癌的三个 Visium 数据集。结果通过揭示 LR 信号和细胞类型如何影响特定的生物过程,以及在每个单细胞中指定 FCE 诱导的效应,从而揭示了 FCE 的多种因素。我们进行了模拟实验,并表明与现有方法相比,HoloNet 在 LR 优先级排序方面更可靠。HoloNet 是一种强大的工具,可以说明细胞间通讯景观,并揭示塑造细胞表型的重要 FCEs。HoloNet 可作为 Python 包在 https://github.com/lhc17/HoloNet 上获得。