Yu Jinbo, Du Meng, Zhang Yapu, Chen Xinliang, Yang Zhengming
University of Chinese Academy of Sciences, Beijing 100049, China.
Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China.
Molecules. 2025 Apr 17;30(8):1807. doi: 10.3390/molecules30081807.
Fluid flow in microporous and nanoporous media exhibits unique behaviors that deviate from classical continuum predictions due to dominant surface forces at small scales. Understanding these microscale flow mechanisms is critical for optimizing unconventional reservoir recovery and other energy applications. This review provides a comparative analysis of the existing literature, highlighting key advances in experimental techniques, theoretical models, and numerical simulations. We discuss how innovative micro/nanofluidic devices and high-resolution imaging methods now enable direct observation of confined flow phenomena, such as slip flow, phase transitions, and non-Darcy behavior. Recent theoretical models have clarified scale-dependent flow regimes by distinguishing microscale effects from macroscopic Darcy flow. Likewise, advanced numerical simulations-including molecular dynamics (MD), lattice Boltzmann methods (LBM), and hybrid multiscale frameworks-capture complex fluid-solid interactions and multiphase dynamics under realistic pressure and wettability conditions. Moreover, the integration of artificial intelligence (e.g., data-driven modeling and physics-informed neural networks) is accelerating data interpretation and multiscale modeling, offering improved predictive capabilities. Through this critical review, key phenomena, such as adsorption layers, fluid-solid interactions, and pore surface heterogeneity, are examined across studies, and persistent challenges are identified. Despite notable progress, challenges remain in replicating true reservoir conditions, bridging microscale and continuum models, and fully characterizing multiphase interface dynamics. By consolidating recent progress and perspectives, this review not only summarizes the state-of-the-art but underscores remaining knowledge gaps and future directions in micro/nanopore flow research.
由于小尺度下主导的表面力,微孔和纳米孔介质中的流体流动呈现出与经典连续介质预测不同的独特行为。理解这些微观尺度的流动机制对于优化非常规油藏采收率及其他能源应用至关重要。本综述对现有文献进行了比较分析,突出了实验技术、理论模型和数值模拟方面的关键进展。我们讨论了创新的微纳流体装置和高分辨率成像方法如何使人们能够直接观察受限流动现象,如滑移流、相变和非达西行为。最近的理论模型通过区分微观尺度效应与宏观达西流,阐明了与尺度相关的流动状态。同样,先进的数值模拟,包括分子动力学(MD)、格子玻尔兹曼方法(LBM)和混合多尺度框架,能够捕捉实际压力和润湿性条件下复杂的流固相互作用和多相动力学。此外,人工智能(如数据驱动建模和物理信息神经网络)的整合正在加速数据解释和多尺度建模,提供了更好的预测能力。通过这一批判性综述,我们在各项研究中考察了诸如吸附层、流固相互作用和孔隙表面非均质性等关键现象,并确定了持续存在的挑战。尽管取得了显著进展,但在复制真实油藏条件、弥合微观尺度模型与连续介质模型之间的差距以及全面表征多相界面动力学方面仍存在挑战。通过整合近期的进展和观点,本综述不仅总结了当前的技术水平,还强调了微/纳米孔流动研究中尚存的知识空白和未来方向。