Balken Eytan, Khaykelson Daniel, Ben-Nun Itai, Levi-Kalisman Yael, Houben Lothar, Rybtchinski Boris, Raviv Uri
Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel.
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
J Chem Inf Model. 2025 May 26;65(10):4968-4979. doi: 10.1021/acs.jcim.5c00223. Epub 2025 May 7.
In modern nanobeam transmission electron microscopy methods, such as 4D-STEM, a converged electron nanobeam is scanned across a sample. Its 2D scattering pattern is recorded at each sample position, mapping the local sample structure. One of the bottlenecks in electron scattering is the analysis of the scattering data obtained from complex atomic or molecular structures. On the basis of D+ software, we developed the software E+ for analyzing electron scattering data, enabling us to model the 2D scattering pattern from any complex structure in a single orientation or a fiber. In addition, the azimuthally integrated 1D scattering curve of isotropically oriented structures (as in solutions or powders), or any other distribution of orientations, can also be computed. E+ allows the docking of geometric and/or molecular atomic models into their assembly symmetry. The assembly symmetry contains the rotations and translations of repeating subunits within a large structure. This process can be repeated hierarchically, using a bottom-up approach, adding as many subunits as needed. This procedure can be used to model the scattering data from any complex supramolecular structure at any spatial resolution, down to atomic resolution. In addition, the contribution from the solvation layers of structures in solutions can be computed in a scalable manner for large complexes. Furthermore, the Python API of E+ can be used for advanced modeling of structure factor and pair distribution functions, taking into account various effects, including thermal fluctuations, polydispersity of any structural parameters, or the intermolecular interactions between subunits. We validate E+ against the abTEM software and show a few examples, demonstrating how E+ can be used to analyze 4D-STEM electron scattering data.
在现代纳米束透射电子显微镜方法中,如4D-STEM,会聚电子纳米束在样品上进行扫描。在每个样品位置记录其二维散射图案,以绘制局部样品结构。电子散射的瓶颈之一是对从复杂原子或分子结构获得的散射数据进行分析。基于D+软件,我们开发了用于分析电子散射数据的E+软件,使我们能够对单个取向或纤维中任何复杂结构的二维散射图案进行建模。此外,还可以计算各向同性取向结构(如溶液或粉末中的结构)的方位角积分一维散射曲线,或任何其他取向分布。E+允许将几何和/或分子原子模型对接至其组装对称性。组装对称性包含大结构中重复亚基的旋转和平移。这个过程可以使用自下而上的方法分层重复,根据需要添加尽可能多的亚基。此过程可用于在任何空间分辨率下对任何复杂超分子结构的散射数据进行建模,直至原子分辨率。此外,对于溶液中的结构,溶剂化层的贡献可以以可扩展的方式计算大型复合物。此外,E+的Python API可用于结构因子和对分布函数的高级建模,考虑到各种效应,包括热涨落、任何结构参数的多分散性或亚基之间的分子间相互作用。我们针对abTEM软件对E+进行了验证,并展示了一些示例,展示了E+如何用于分析4D-STEM电子散射数据。