Suppr超能文献

机器学习与多发性硬化症的临床脑电图数据:一项系统综述。

Machine learning and clinical EEG data for multiple sclerosis: A systematic review.

作者信息

Mouazen Badr, Bendaouia Ahmed, Abdelwahed El Hassan, De Marco Giovanni

机构信息

LINP2 Lab, Paris Nanterre University, UPL Paris, France.

Institute for Advanced Manufacturing (IAM), University of Texas Rio Grande Valley, United States.

出版信息

Artif Intell Med. 2025 Aug;166:103116. doi: 10.1016/j.artmed.2025.103116. Epub 2025 Apr 29.

Abstract

Multiple Sclerosis (MS) is a chronic neuroinflammatory disease of the Central Nervous System (CNS) in which the body's immune system attacks and destroys the myelin sheath that protects nerve fibers, leading to a wide range of debilitating symptoms and causing disruption of axonal signal transmission. Accurate prediction, diagnosis, monitoring and treatment (PDMT) of MS are essential to improve patient outcomes. Recent advances in neuroimaging technologies, particularly electroencephalography (EEG), combined with machine learning (ML) techniques - including Deep Learning (DL) models - offer promising avenues for enhancing MS management. This systematic review synthesizes existing research on the application of ML and DL models to EEG data for MS. It explores the methodologies used, with a focus on DL architectures such as Convolutional Neural Networks (CNNs) and hybrid models, and highlights recent advancements in ML techniques and EEG technologies that have significantly improved MS diagnosis and monitoring. The review addresses the challenges and potential biases in using ML-based EEG analysis for MS. Strategies to mitigate these challenges, including advanced preprocessing techniques, diverse training datasets, cross-validation methods, and explainable Artificial Intelligence (AI), are discussed. Finally, the paper outlines potential future applications and trends in ML for MS management. This review underscores the transformative potential of ML-enhanced EEG analysis in improving MS management, providing insights into future research directions to overcome existing limitations and further improve clinical practice.

摘要

多发性硬化症(MS)是一种中枢神经系统(CNS)的慢性神经炎症性疾病,在该疾病中,人体免疫系统攻击并破坏保护神经纤维的髓鞘,导致一系列使人衰弱的症状,并引起轴突信号传递中断。对MS进行准确的预测、诊断、监测和治疗(PDMT)对于改善患者预后至关重要。神经成像技术的最新进展,特别是脑电图(EEG),与机器学习(ML)技术(包括深度学习(DL)模型)相结合,为加强MS管理提供了有前景的途径。本系统综述综合了关于将ML和DL模型应用于MS的EEG数据的现有研究。它探讨了所使用的方法,重点关注诸如卷积神经网络(CNN)和混合模型等DL架构,并突出了ML技术和EEG技术的最新进展,这些进展显著改善了MS的诊断和监测。该综述阐述了使用基于ML的EEG分析诊断MS时面临的挑战和潜在偏差。讨论了减轻这些挑战的策略,包括先进的预处理技术、多样的训练数据集、交叉验证方法和可解释人工智能(AI)。最后,本文概述了ML在MS管理中的潜在未来应用和趋势。本综述强调了ML增强的EEG分析在改善MS管理方面的变革潜力,为克服现有局限性并进一步改善临床实践的未来研究方向提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验