Fan Pan, Liu Yaqing, Liu Chunyue, Yao Hao, Xu Shibo, Jiang Yueqing, Wu Yang, Liu Yan, Guo Xing
Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2503342122. doi: 10.1073/pnas.2503342122. Epub 2025 Jul 15.
Impairment of mitochondrial protein stability is associated with neurodegeneration in Huntington's disease (HD). However, the E3 ligase responsible for maintaining mitochondrial protein homeostasis in HD remains poorly understood. In this study, we demonstrate that NEDD4L protein levels are elevated in human striatal organoids (hSOs) derived from induced pluripotent stem cells of patients as well as in a mouse model of HD. Overexpression of NEDD4L leads to degeneration and cell death of medium spiny neurons (MSNs), along with a reduction in motor activities. Conversely, deletion of NEDD4L restores abnormal MSN morphology, corrects deficits in calcium signaling, alleviates neurodegeneration in HD-hSOs, and improves motor dysfunction observed in YAC128 mice. Mechanistically, NEDD4L disrupts mitochondrial function by binding to lipoyl(octanoyl) transferase 2 (LIPT2) and promoting its degradation through ubiquitination and lysosomal pathways. This process impairs lipoic acid biosynthesis and the lipoylation of E2 subunits of alpha-ketoglutarate dehydrogenase (α-KGDH E2). Furthermore, either overexpressing LIPT2 or administering lipoic acid mitigates neurodegeneration and rectifies deficits in motor coordination activity. These findings unveil a molecular mechanism underlying the regulation of lipoic acid metabolism and underscore the potential therapeutic role of protein lipoylation in the treatment of HD.
线粒体蛋白稳定性受损与亨廷顿舞蹈病(HD)中的神经退行性变有关。然而,在HD中负责维持线粒体蛋白稳态的E3连接酶仍知之甚少。在本研究中,我们证明,在源自患者诱导多能干细胞的人纹状体类器官(hSOs)以及HD小鼠模型中,NEDD4L蛋白水平升高。NEDD4L的过表达导致中等棘状神经元(MSNs)变性和细胞死亡,同时运动活性降低。相反,NEDD4L的缺失可恢复MSN的异常形态,纠正钙信号缺陷,减轻HD-hSOs中的神经退行性变,并改善在YAC128小鼠中观察到的运动功能障碍。从机制上讲,NEDD4L通过与硫辛酰(辛酰)转移酶2(LIPT2)结合并通过泛素化和溶酶体途径促进其降解来破坏线粒体功能。这一过程损害硫辛酸生物合成以及α-酮戊二酸脱氢酶(α-KGDH E2)的E2亚基的硫辛酰化。此外,过表达LIPT2或给予硫辛酸均可减轻神经退行性变并纠正运动协调活动缺陷。这些发现揭示了硫辛酸代谢调控的分子机制,并强调了蛋白硫辛酰化在HD治疗中的潜在治疗作用。