Dos Santos Luiza B F, Svitlyk Volodymyr, Richter Selina, Hennig Christoph, Müller Katharina, Bazarkina Elena F, Kvashnina Kristina O, Stumpf Thorsten, Huittinen Nina
Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße. 34-36, 14195 Berlin, Germany.
Inorg Chem. 2025 May 19;64(19):9670-9683. doi: 10.1021/acs.inorgchem.5c00865. Epub 2025 May 8.
The ZrO-CeO system is fundamental to various technological applications, yet unresolved questions persist regarding cation miscibility and the occurrence of metastable phases in the ZrCeO phase diagram. This work addresses these gaps through a comprehensive investigation of ZrCeO compositions with varying cerium concentrations and incorporating Eu as a luminescent probe. Synchrotron powder X-ray diffraction analysis unveiled a miscibility gap between 20 and 50 mol % cerium. Beyond this gap, the formation of solid solutions and multiple crystalline phases was observed, including tetragonal prime (t') and tetragonal double prime (t″) structures, depending on cerium content. Raman investigations revealed a unique distortion band in all compositions containing the t' phase. Our high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) analysis implies that this feature results from oxygen ion displacement in the t' structure. Luminescence spectroscopy of the europium environment revealed distinct excitation and emission spectra across the various crystal phases, enabling unambiguous identification of all metastable phases. These findings highlight the complex polymorphism of the ZrO-CeO system. The ability to precisely control phase composition offers significant potential for optimizing properties for diverse applications, including oxygen sensors, three-way catalysts, and solid oxide fuel cells for clean, sustainable energy generation.
ZrO-CeO体系对于各种技术应用至关重要,但关于阳离子混溶性以及ZrCeO相图中亚稳相的出现仍存在未解决的问题。这项工作通过对不同铈浓度的ZrCeO组合物进行全面研究,并引入Eu作为发光探针,来填补这些空白。同步辐射粉末X射线衍射分析揭示了铈含量在20至50摩尔%之间存在混溶间隙。超过这个间隙,观察到固溶体和多种晶相的形成,包括四方初相(t')和四方复相(t″)结构,这取决于铈含量。拉曼研究表明,在所有含有t'相的组合物中都有一个独特的畸变带。我们的高能量分辨率荧光检测X射线吸收近边结构光谱(HERFD-XANES)分析表明,这一特征是由t'结构中的氧离子位移导致的。铕环境的发光光谱揭示了不同晶相之间明显的激发和发射光谱,从而能够明确识别所有亚稳相。这些发现突出了ZrO-CeO体系复杂的多晶型性。精确控制相组成的能力为优化包括氧传感器、三元催化剂和用于清洁、可持续能源生产的固体氧化物燃料电池等各种应用的性能提供了巨大潜力。