Suppr超能文献

荷兰新冠病毒疾病病例的时空预测,用于源头追踪和接触者追踪。

Spatio-temporal forecasting of COVID-19 cases in the Netherlands for source and contact tracing.

作者信息

Keuken Max C, Bosdriesz Jizzo R, Boyd Anders, den Boogert Elisabeth M, Joore Ivo K, Dukers-Muijrers Nicole H T M, van Rijckevorsel Gini, Götz Hannelore M, Goverse Irene E, Petrignani Mariska W F, Raven Stijn F H, van den Hof Susan, Wevers-de Boer Kirsten V C, van der Loeff Maarten F Schim, Matser Amy

机构信息

Corona Data team, Public Health Service (GGD) of Amsterdam, Amsterdam, the Netherlands.

Equal contribution.

出版信息

Int J Popul Data Sci. 2025 May 7;10(1):2703. doi: 10.23889/ijpds.v10i1.2703. eCollection 2025.

Abstract

Source and contact tracing (SCT) is a core public health measure that is used to contain the spread of infectious diseases. It aims to identify a source of infection, and to advise those who have been exposed to this source. Due to the rapid increases in incidence of COVID-19 in the Netherlands, the capacity to conduct a full SCT quickly became insufficient. Therefore, the public health services (PHS) might benefit from a restricted strategy targeted to geographical regions where (predicted) case-to-case transmission is high. In this study, we set out to develop a prediction model for the number of COVID-19 cases per postal code within the Netherlands using geographic and demographic features. The study population consists of individuals residing in one of the participating nine Dutch PHS regions who tested positive for SARS-CoV-2 between 1 June 2020 and 27 February 2021. Using a machine learning random forest regression model, we predicted the top 100 postal codes with the highest number of cases with an accuracy of 49% for the current week, 42% for next week, and 44% for two weeks from present. In addition, the age groups of 20-39 and 40-64 years had a higher prediction accuracy than groups outside these age ranges. The developed model provides a starting point for targeted preventive SCT efforts that incorporate geospatial and demographic characteristics of a neighbourhood. It should nonetheless be noted that during the early stages of the outbreak, the number of available datapoints needed to inform such models are likely insufficient. Given the accuracy and data requirements of the developed model, it is unlikely that this class of models can play a pivotal role in informing policy during the early phases of a future epidemic.

摘要

传染源和接触者追踪(SCT)是一项核心公共卫生措施,用于遏制传染病的传播。其目的是确定感染源,并向接触过该感染源的人提供建议。由于荷兰新冠肺炎发病率迅速上升,快速开展全面传染源和接触者追踪的能力很快变得不足。因此,公共卫生服务机构(PHS)可能会从针对(预测)病例间传播率高的地理区域的受限策略中受益。在本研究中,我们着手利用地理和人口特征开发一个预测荷兰各邮政编码区域内新冠肺炎病例数的模型。研究人群包括居住在参与研究的荷兰九个公共卫生服务区域之一、在2020年6月1日至2021年2月27日期间新冠病毒检测呈阳性的个体。使用机器学习随机森林回归模型,我们预测了病例数最多的前100个邮政编码区域,本周预测准确率为49%,下周为42%,两周后为44%。此外,20 - 39岁和40 - 64岁年龄组的预测准确率高于这些年龄范围之外的组。所开发的模型为结合社区地理空间和人口特征的针对性预防性传染源和接触者追踪工作提供了一个起点。然而,应该注意的是,在疫情爆发的早期阶段,为这类模型提供信息所需的可用数据点数量可能不足。鉴于所开发模型的准确性和数据要求,这类模型在未来疫情早期阶段为政策提供信息方面不太可能发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bce5/12058245/8828f277b17b/ijpds-10-2703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验