Gazis Theodore A, Ruta Vincenzo, Vilé Gianvito
Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133 Milano, Italy.
ACS Catal. 2025 Apr 12;15(9):6852-6873. doi: 10.1021/acscatal.4c07405. eCollection 2025 May 2.
Enantioselective transformations are crucial in various fields, including chemistry, biology, and materials science. Today, the selective production of enantiopure compounds is achieved through asymmetric homogeneous catalysis. Single-atom catalysts (SACs) are emerging as a transformative approach in chemistry, enabling the heterogenization of organometallic complexes and effectively bridging the gap between homogeneous and heterogeneous catalysis. Despite their potential, the integration of SACs into enantioselective processes remains an underexplored area. This perspective offers a comprehensive analysis of possible strategies for the design of heterogeneous asymmetric catalysts, examining how chiral surfaces, chiral modifiers, grafted chiral complexes, and spatial confinement techniques can be effectively employed to enhance enantioselectivity. Each of these methods presents distinct advantages and challenges; for example, chiral surfaces and chiral modifiers offer potential for tailored reactivity but can suffer from limited stability and selectivity, while grafted chiral complexes provide robust platforms but may face issues related to scalability and synthesis complexity. Spatial confinement strategies show promise in enhancing catalyst efficiency but may be constrained by accessibility and reproducibility concerns. These strategies lay the groundwork for their adaptation to SACs, by providing innovative approaches to replicate the well-defined chiral environments of homogeneous catalysts while preserving the stability, reusability, and unique advantages of single-atom heterogeneous systems.
对映选择性转化在包括化学、生物学和材料科学在内的各个领域都至关重要。如今,对映体纯化合物的选择性生产是通过不对称均相催化实现的。单原子催化剂(SACs)正在成为化学领域一种变革性方法,能够使有机金属配合物多相化,并有效弥合均相催化和多相催化之间的差距。尽管具有潜力,但将单原子催化剂整合到对映选择性过程中仍是一个未被充分探索的领域。本文观点对非均相不对称催化剂设计的可能策略进行了全面分析,研究了如何有效利用手性表面、手性修饰剂、接枝手性配合物和空间限制技术来提高对映选择性。这些方法各自具有独特的优势和挑战;例如,手性表面和手性修饰剂具有定制反应性的潜力,但可能存在稳定性和选择性有限的问题,而接枝手性配合物提供了强大的平台,但可能面临与可扩展性和合成复杂性相关的问题。空间限制策略在提高催化剂效率方面显示出前景,但可能受到可及性和重现性问题的限制。这些策略通过提供创新方法来复制均相催化剂明确的手性环境,同时保留单原子多相体系的稳定性、可重复使用性和独特优势,为将其应用于单原子催化剂奠定了基础。