Firestone Tawni B R, Fetherman Eric R, Huyvaert Kathryn P, Drennan John D, Brock Rebecca E, Yeatts Brooke, Winkelman Dana L
Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, Colorado, United States of America.
Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America.
PLoS One. 2025 May 8;20(5):e0323010. doi: 10.1371/journal.pone.0323010. eCollection 2025.
Effective disease surveillance relies on accurate pathogen testing and robust prevalence estimates. Diagnostic specificity (DSp), the probability that an uninfected animal tests negative, is high when false positives are low. Diagnostic sensitivity (DSe) is the probability an infected animal tests positive; higher DSe means fewer false negatives. However, sensitivity and false negatives are harder to estimate without a "gold standard", an assay that can detect between 90 - 100% of true positive infections. Occupancy estimation of infection prevalence offers one solution by allowing for imperfect detection of the pathogen. Testing potentially infected tissues multiple times allows for the use of a Bayesian multistate occupancy model to estimate the probability of pathogen infection in tissues [Formula: see text] and detection probabilities [Formula: see text] for different assays. Using [Formula: see text] and [Formula: see text] from the posterior distribution, the conditional probability of detecting the pathogen can be modeled, allowing for the calculation of DSe. Renibacterium salmoninarum is a bacterial pathogen causing bacterial kidney disease among salmonid species and was the model pathogen we used to train our model. The current testing standard for salmonids combines initial screening for antibodies using direct fluorescent antibody test (DFAT) with polymerase chain reaction (PCR) confirmation to detect R. salmoninarum. However, detection of R. salmoninarum still varies between species, tissues, and assays. Here, a multi-state occupancy model was used to estimate detection probability among individual and dual kidney/liver infections with DFAT and qPCR in fish with an unknown infection status. Both assays produced false negatives, but qPCR had fewer than DFAT and a higher DSe. Infection state was often misclassified, but multiple surveys per individual or combining tissues for testing improved DSe for both assays.
有效的疾病监测依赖于准确的病原体检测和可靠的流行率估计。诊断特异性(DSp),即未感染动物检测为阴性的概率,在假阳性率较低时较高。诊断敏感性(DSe)是指感染动物检测为阳性的概率;较高的DSe意味着假阴性较少。然而,在没有“金标准”的情况下,敏感性和假阴性更难估计,“金标准”是一种能够检测出90%-100%真正阳性感染的检测方法。感染流行率的占有率估计通过允许对病原体进行不完美检测提供了一种解决方案。对潜在感染组织进行多次检测,可以使用贝叶斯多状态占有率模型来估计组织中病原体感染的概率[公式:见正文]以及不同检测方法的检测概率[公式:见正文]。利用后验分布中的[公式:见正文]和[公式:见正文],可以对检测到病原体的条件概率进行建模,从而计算出DSe。鲑肾杆菌是一种导致鲑科鱼类细菌性肾病的细菌病原体,是我们用来训练模型的模型病原体。目前鲑科鱼类的检测标准是将使用直接荧光抗体试验(DFAT)进行抗体初步筛查与聚合酶链反应(PCR)确认相结合,以检测鲑肾杆菌。然而,鲑肾杆菌的检测在物种、组织和检测方法之间仍存在差异。在这里,使用多状态占有率模型来估计在感染状态未知的鱼类中,通过DFAT和qPCR对单个和双肾/肝感染的检测概率。两种检测方法都产生了假阴性,但qPCR的假阴性比DFAT少,DSe更高。感染状态经常被错误分类,但对个体进行多次调查或联合组织进行检测可提高两种检测方法的DSe。