Podlipec Rok, Pirker Luka, Krišelj Ana, Hlawacek Gregor, Gianoncelli Alessandra, Pelicon Primož
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328 Dresden, Germany.
ACS Nano. 2025 May 20;19(19):18227-18243. doi: 10.1021/acsnano.4c17838. Epub 2025 May 9.
Correlated light and electron microscopy (CLEM) has become essential in life sciences due to advancements in imaging resolution, sensitivity, and sample preservation. In nanotoxicology─specifically, studying the health effects of particulate matter exposure─CLEM can enable molecular-level structural as well as functional analysis of nanoparticle interactions with lung tissue, which is key for the understanding of modes of action. In our study, we implement an integrated high-resolution fluorescence lifetime imaging microscopy (FLIM) and hyperspectral fluorescence imaging (fHSI), scanning electron microscopy (SEM), ultrahigh resolution helium ion microscopy (HIM) and synchrotron micro X-ray fluorescence (SR μXRF), to characterize the nanobio interface and to better elucidate the modes of action of lung epithelial cells response to known inflammatory titanium dioxide nanotubes (TiO NTs). Morpho-functional assessment uncovered several mechanisms associated with extensive DNA, essential minerals, and iron accumulation, cellular surface immobilization, and the localized formation of fibrous structures, all confirming immunomodulatory responses. These findings advance our understanding of the early cellular processes leading to inflammation development after lung epithelium exposure to these high-aspect-ratio nanoparticles. Our high-resolution experimental approach, exploiting light, ion, and electron sources, provides a robust framework for future research into nanoparticle toxicity and its impact on human health.
由于成像分辨率、灵敏度和样品保存方面的进步,相关光电子显微镜(CLEM)在生命科学中变得至关重要。在纳米毒理学领域——具体而言,研究颗粒物暴露对健康的影响——CLEM能够对纳米颗粒与肺组织的相互作用进行分子水平的结构和功能分析,这对于理解作用模式至关重要。在我们的研究中,我们采用了集成的高分辨率荧光寿命成像显微镜(FLIM)和高光谱荧光成像(fHSI)、扫描电子显微镜(SEM)、超高分辨率氦离子显微镜(HIM)以及同步加速器微X射线荧光(SR μXRF),以表征纳米生物界面,并更好地阐明肺上皮细胞对已知炎性二氧化钛纳米管(TiO NTs)反应的作用模式。形态功能评估揭示了与广泛的DNA、必需矿物质和铁积累、细胞表面固定以及纤维结构的局部形成相关的几种机制,所有这些都证实了免疫调节反应。这些发现推进了我们对肺上皮暴露于这些高纵横比纳米颗粒后导致炎症发展的早期细胞过程的理解。我们利用光、离子和电子源的高分辨率实验方法为未来纳米颗粒毒性及其对人类健康影响的研究提供了一个强大的框架。