Zuo Chunman, Zhu Junchao, Zou Jiawei, Chen Luonan
School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Clin Transl Med. 2025 May;15(5):e70331. doi: 10.1002/ctm2.70331.
Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies. KEY POINTS: Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity. AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics. Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.
在细胞的空间背景下分析基因组、表观基因组、转录组、蛋白质组和代谢组,已经改变了我们对肿瘤时空异质性的理解。空间多组学技术的进步现在揭示了塑造细胞行为和组织动态的复杂分子相互作用。这篇综述重点介绍了推动空间域识别及其伪关系的关键技术和计算方法,以及驱动疾病进展的细胞内和细胞间分子网络的推断。我们还讨论了应对主要挑战的策略,包括数据稀疏性、高维度、可扩展性和异质性。此外,我们概述了空间多组学如何能够对疾病机制有新的见解,推动精准医学并为靶向治疗提供依据。关键点:空间多组学的进步有助于我们理解肿瘤时空异质性。人工智能驱动的多模态模型揭示了构成细胞行为和组织动态基础的复杂分子相互作用。结合多组学技术和人工智能支持的生物信息学工具有助于预测关键疾病阶段,如癌前阶段,推动精准医学并为靶向治疗策略提供依据。
Clin Transl Med. 2025-5
Brief Bioinform. 2021-9-2
Semin Cancer Biol. 2023-1
Adv Cancer Res. 2024
Genes (Basel). 2019-1-28
Front Biosci (Landmark Ed). 2024-11-28
Nat Rev Mol Cell Biol. 2023-10
Nature. 2024-10
NAR Genom Bioinform. 2024-8-6
Bioinformatics. 2024-7-18
Nat Methods. 2024-9