文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用空间多模态数据解析肿瘤时空异质性。

Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data.

作者信息

Zuo Chunman, Zhu Junchao, Zou Jiawei, Chen Luonan

机构信息

School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

出版信息

Clin Transl Med. 2025 May;15(5):e70331. doi: 10.1002/ctm2.70331.


DOI:10.1002/ctm2.70331
PMID:40341789
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12059211/
Abstract

Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies. KEY POINTS: Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity. AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics. Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.

摘要

在细胞的空间背景下分析基因组、表观基因组、转录组、蛋白质组和代谢组,已经改变了我们对肿瘤时空异质性的理解。空间多组学技术的进步现在揭示了塑造细胞行为和组织动态的复杂分子相互作用。这篇综述重点介绍了推动空间域识别及其伪关系的关键技术和计算方法,以及驱动疾病进展的细胞内和细胞间分子网络的推断。我们还讨论了应对主要挑战的策略,包括数据稀疏性、高维度、可扩展性和异质性。此外,我们概述了空间多组学如何能够对疾病机制有新的见解,推动精准医学并为靶向治疗提供依据。关键点:空间多组学的进步有助于我们理解肿瘤时空异质性。人工智能驱动的多模态模型揭示了构成细胞行为和组织动态基础的复杂分子相互作用。结合多组学技术和人工智能支持的生物信息学工具有助于预测关键疾病阶段,如癌前阶段,推动精准医学并为靶向治疗策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/339c7c10a1ff/CTM2-15-e70331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/65cc7a005e51/CTM2-15-e70331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/95eed674ba1f/CTM2-15-e70331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/c2ea3d5e1e53/CTM2-15-e70331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/339c7c10a1ff/CTM2-15-e70331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/65cc7a005e51/CTM2-15-e70331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/95eed674ba1f/CTM2-15-e70331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/c2ea3d5e1e53/CTM2-15-e70331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/12059211/339c7c10a1ff/CTM2-15-e70331-g002.jpg

相似文献

[1]
Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data.

Clin Transl Med. 2025-5

[2]
Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine.

Brief Bioinform. 2021-9-2

[3]
Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence.

Clin Chim Acta. 2024-6-1

[4]
Artificial intelligence-based multi-omics analysis fuels cancer precision medicine.

Semin Cancer Biol. 2023-1

[5]
Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications.

J Hematol Oncol. 2024-8-24

[6]
Deep learning-based multimodal spatial transcriptomics analysis for cancer.

Adv Cancer Res. 2024

[7]
Machine Learning and Integrative Analysis of Biomedical Big Data.

Genes (Basel). 2019-1-28

[8]
Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL).

Front Biosci (Landmark Ed). 2024-11-28

[9]
Single-Cell Multi-Omics: Insights into Therapeutic Innovations to Advance Treatment in Cancer.

Int J Mol Sci. 2025-3-9

[10]
The technological landscape and applications of single-cell multi-omics.

Nat Rev Mol Cell Biol. 2023-10

引用本文的文献

[1]
Immunotherapy in biliary tract cancer: reshaping the tumour microenvironment and advancing precision combination strategies.

Front Immunol. 2025-8-8

[2]
Spatial histology and gene-expression representation and generative learning via online self-distillation contrastive learning.

Brief Bioinform. 2025-7-2

本文引用的文献

[1]
Inferring cell trajectories of spatial transcriptomics via optimal transport analysis.

Cell Syst. 2025-2-19

[2]
Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution.

Nat Commun. 2025-1-2

[3]
Temporal recording of mammalian development and precancer.

Nature. 2024-10

[4]
Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics.

Nat Methods. 2024-12

[5]
Global loss of promoter-enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis.

Nat Cancer. 2024-11

[6]
SIRV: spatial inference of RNA velocity at the single-cell resolution.

NAR Genom Bioinform. 2024-8-6

[7]
STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.

Genome Biol. 2024-8-5

[8]
Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro.

Bioinformatics. 2024-7-18

[9]
Deciphering spatial domains from spatial multi-omics with SpatialGlue.

Nat Methods. 2024-9

[10]
Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning.

Nat Commun. 2024-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索