Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
Center for Collaborative AI in Healthcare, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
Genome Biol. 2024 Aug 5;25(1):206. doi: 10.1186/s13059-024-03353-0.
Spatially resolved transcriptomics integrates high-throughput transcriptome measurements with preserved spatial cellular organization information. However, many technologies cannot reach single-cell resolution. We present STdGCN, a graph model leveraging single-cell RNA sequencing (scRNA-seq) as reference for cell-type deconvolution in spatial transcriptomic (ST) data. STdGCN incorporates expression profiles from scRNA-seq and spatial localization from ST data for deconvolution. Extensive benchmarking on multiple datasets demonstrates that STdGCN outperforms 17 state-of-the-art models. In a human breast cancer Visium dataset, STdGCN delineates stroma, lymphocytes, and cancer cells, aiding tumor microenvironment analysis. In human heart ST data, STdGCN identifies changes in endothelial-cardiomyocyte communications during tissue development.
空间分辨转录组学将高通量转录组测量与保留的空间细胞组织信息相结合。然而,许多技术无法达到单细胞分辨率。我们提出了 STdGCN,这是一种图模型,利用单细胞 RNA 测序(scRNA-seq)作为参考,对空间转录组(ST)数据中的细胞类型进行去卷积。STdGCN 将 scRNA-seq 的表达谱和 ST 数据的空间定位结合起来进行去卷积。在多个数据集上的广泛基准测试表明,STdGCN 优于 17 种最先进的模型。在人类乳腺癌 Visium 数据集上,STdGCN 描绘了基质、淋巴细胞和癌细胞,有助于肿瘤微环境分析。在人类心脏 ST 数据中,STdGCN 确定了组织发育过程中心内皮细胞-心肌细胞通讯的变化。
Nat Biotechnol. 2022-9
Research (Wash D C). 2025-7-2
Nat Rev Genet. 2025-5-14
Clin Transl Med. 2025-5
Brief Bioinform. 2025-3-4
eGastroenterology. 2024-10-2
Brief Bioinform. 2022-7-18
Nat Biotechnol. 2022-9