文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

STdGCN:基于图卷积网络的空间转录组细胞类型去卷积。

STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.

机构信息

Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.

Center for Collaborative AI in Healthcare, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.

出版信息

Genome Biol. 2024 Aug 5;25(1):206. doi: 10.1186/s13059-024-03353-0.


DOI:10.1186/s13059-024-03353-0
PMID:39103939
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11302295/
Abstract

Spatially resolved transcriptomics integrates high-throughput transcriptome measurements with preserved spatial cellular organization information. However, many technologies cannot reach single-cell resolution. We present STdGCN, a graph model leveraging single-cell RNA sequencing (scRNA-seq) as reference for cell-type deconvolution in spatial transcriptomic (ST) data. STdGCN incorporates expression profiles from scRNA-seq and spatial localization from ST data for deconvolution. Extensive benchmarking on multiple datasets demonstrates that STdGCN outperforms 17 state-of-the-art models. In a human breast cancer Visium dataset, STdGCN delineates stroma, lymphocytes, and cancer cells, aiding tumor microenvironment analysis. In human heart ST data, STdGCN identifies changes in endothelial-cardiomyocyte communications during tissue development.

摘要

空间分辨转录组学将高通量转录组测量与保留的空间细胞组织信息相结合。然而,许多技术无法达到单细胞分辨率。我们提出了 STdGCN,这是一种图模型,利用单细胞 RNA 测序(scRNA-seq)作为参考,对空间转录组(ST)数据中的细胞类型进行去卷积。STdGCN 将 scRNA-seq 的表达谱和 ST 数据的空间定位结合起来进行去卷积。在多个数据集上的广泛基准测试表明,STdGCN 优于 17 种最先进的模型。在人类乳腺癌 Visium 数据集上,STdGCN 描绘了基质、淋巴细胞和癌细胞,有助于肿瘤微环境分析。在人类心脏 ST 数据中,STdGCN 确定了组织发育过程中心内皮细胞-心肌细胞通讯的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/be61409354b2/13059_2024_3353_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/860c01749e69/13059_2024_3353_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/5f805461a8ad/13059_2024_3353_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/a6e741c41f24/13059_2024_3353_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/a5e217fa1114/13059_2024_3353_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/be61409354b2/13059_2024_3353_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/860c01749e69/13059_2024_3353_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/5f805461a8ad/13059_2024_3353_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/a6e741c41f24/13059_2024_3353_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/a5e217fa1114/13059_2024_3353_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b28/11302295/be61409354b2/13059_2024_3353_Fig5_HTML.jpg

相似文献

[1]
STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.

Genome Biol. 2024-8-5

[2]
Spatial Transcriptomic Cell-type Deconvolution Using Graph Neural Networks.

bioRxiv. 2023-6-9

[3]
SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.

J Comput Biol. 2024-9

[4]
SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.

Commun Biol. 2024-5-25

[5]
Spatially informed cell-type deconvolution for spatial transcriptomics.

Nat Biotechnol. 2022-9

[6]
SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.

Bioinformatics. 2022-10-31

[7]
SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data.

Genome Biol. 2024-10-14

[8]
Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve.

Nat Commun. 2023-3-11

[9]
Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network.

Nat Commun. 2024-8-18

[10]
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.

RNA. 2020-6-12

引用本文的文献

[1]
Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon.

Bioinformatics. 2025-9-1

[2]
scAGCI: an anchor graph-based method for cell clustering from integrated scRNA-seq and scATAC-seq data.

Brief Bioinform. 2025-7-2

[3]
Artificial Intelligence-Powered Insights into Polyclonality and Tumor Evolution.

Research (Wash D C). 2025-7-2

[4]
Cell-type deconvolution methods for spatial transcriptomics.

Nat Rev Genet. 2025-5-14

[5]
Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data.

Clin Transl Med. 2025-5

[6]
Graph neural networks for single-cell omics data: a review of approaches and applications.

Brief Bioinform. 2025-3-4

[7]
Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Front Immunol. 2025-2-20

[8]
New dimension in viral hepatitis research.

eGastroenterology. 2024-10-2

[9]
Deconvolution of spatial transcriptomics data via graph contrastive learning and partial least square regression.

Brief Bioinform. 2024-11-22

[10]
Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.

Front Immunol. 2024-12-19

本文引用的文献

[1]
SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics.

Nat Commun. 2023-8-7

[2]
A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics.

Nat Commun. 2023-3-21

[3]
SPICEMIX enables integrative single-cell spatial modeling of cell identity.

Nat Genet. 2023-1

[4]
SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.

Bioinformatics. 2022-10-31

[5]
A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.

Brief Bioinform. 2022-7-18

[6]
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

Cell. 2022-5-12

[7]
Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis.

Dev Cell. 2022-5-23

[8]
Spatially informed cell-type deconvolution for spatial transcriptomics.

Nat Biotechnol. 2022-9

[9]
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.

Nat Commun. 2022-4-29

[10]
Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology.

Nat Cancer. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索