Suppr超能文献

从空间分辨转录组学推断等位基因特异性拷贝数畸变和肿瘤系统地理学。

Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics.

作者信息

Ma Cong, Balaban Metin, Liu Jingxian, Chen Siqi, Wilson Michael J, Sun Christopher H, Ding Li, Raphael Benjamin J

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, USA.

Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Nat Methods. 2024 Dec;21(12):2239-2247. doi: 10.1038/s41592-024-02438-9. Epub 2024 Oct 30.

Abstract

Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.

摘要

分析肿瘤在时间和空间上的体细胞进化是癌症研究中的一项关键挑战。空间分辨转录组学(SRT)可测量肿瘤中数千个空间位置的基因表达,但不能直接揭示基因组畸变。我们引入了CalicoST,这是一种算法,可从SRT数据中同时推断等位基因特异性拷贝数变异(CNA)并重建空间肿瘤进化,即系统地理学。CalicoST识别出重要的CNA类别,包括杂合性的拷贝中性缺失和镜像亚克隆CNA,这些在总拷贝数分析中是不可见的。使用来自人类肿瘤图谱网络的9名患者的数据,CalicoST的平均准确率达到86%,比现有方法高出约21%。CalicoST为两名有多个相邻切片的患者重建了三维空间中的肿瘤系统地理学。对来自癌性前列腺器官的多个SRT切片进行CalicoST分析,发现在前列腺两侧存在镜像亚克隆CNA,在遗传和物理空间中形成了分支状的系统地理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/820c/11621028/f8f7a6d089f6/41592_2024_2438_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验