Suppr超能文献

在成像质谱数据处理中保留全谱信息。

Preserving full spectrum information in imaging mass spectrometry data reduction.

作者信息

Moens Roger A R, Migas Lukasz G, Van Ardenne Jacqueline M, Skaar Eric P, Spraggins Jeffrey M, Van de Plas Raf

机构信息

Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, Zuid-Holland, The Netherlands.

Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States.

出版信息

Bioinformatics. 2025 May 6;41(5). doi: 10.1093/bioinformatics/btaf247.

Abstract

MOTIVATION

Imaging mass spectrometry (IMS) has become an important tool for molecular characterization of biological tissue. However, IMS experiments tend to yield large datasets, routinely recording over 200 000 ion intensity values per mass spectrum and more than 100 000 pixels, i.e. spectra, per dataset. Traditionally, IMS data size challenges have been addressed by feature selection or extraction, such as by peak picking and peak integration. Selective data reduction techniques such as peak picking only retain certain parts of a mass spectrum, and often these describe only medium-to-high-abundance species. Since lower-intensity peaks and, for example, near-isobar species are sometimes missed, selective methods can potentially bias downstream analysis toward a subset of species in the data rather than considering all species measured.

RESULTS

We present an alternative to selective data reduction of IMS data that achieves similar data size reduction while better conserving the ion intensity profiles across all recorded m/z-bins, thereby preserving full spectrum information. Our method utilizes a low-rank matrix completion model combined with a randomized sparse-format-aware algorithm to approximate IMS datasets. This representation offers reduced dimensionality and a data footprint comparable to peak picking but also captures complete spectral profiles, enabling comprehensive analysis and compression. We demonstrate improved preservation of lower signal-to-noise ratio signals and near-isobars, mitigation of selection bias, and reduced information loss compared to current state-of-the-art data reduction methods in IMS.

AVAILABILITY AND IMPLEMENTATION

The source code is available at https://github.com/vandeplaslab/full_profile and data are available at https://doi.org/10.4121/a6efd47a-b4ec-493e-a742-70e8a369f788.

摘要

动机

成像质谱(IMS)已成为生物组织分子表征的重要工具。然而,IMS实验往往会产生大量数据集,每个质谱通常记录超过200000个离子强度值,每个数据集记录超过100000个像素,即光谱。传统上,IMS数据大小的挑战通过特征选择或提取来解决,例如通过峰检测和峰积分。诸如峰检测之类的选择性数据缩减技术仅保留质谱的某些部分,而且这些部分通常仅描述中高丰度物种。由于有时会错过低强度峰以及例如近等压物种,选择性方法可能会使下游分析偏向数据中的一部分物种,而不是考虑所有测量的物种。

结果

我们提出了一种替代IMS数据选择性缩减的方法,该方法在实现类似数据大小缩减的同时,能更好地保留所有记录的质荷比区间内的离子强度分布,从而保留完整的光谱信息。我们的方法利用低秩矩阵补全模型结合随机稀疏格式感知算法来近似IMS数据集。这种表示方式提供了与峰检测相当的降维和数据占用量,同时还能捕获完整的光谱分布,实现全面的分析和压缩。与当前IMS中最先进的数据缩减方法相比,我们展示了对低信噪比信号和近等压物的更好保留、选择偏差的减轻以及信息损失的减少。

可用性和实现

源代码可在https://github.com/vandeplaslab/full_profile获取,数据可在https://doi.org/10.4121/a6efd47a-b4ec-493e-a742-70e8a369f788获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b086/12119130/28b7bce97c36/btaf247f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验