Suppr超能文献

实验性微生物群落中的宏观生态模式。

Macroecological patterns in experimental microbial communities.

作者信息

Shoemaker William R, Sánchez Álvaro, Grilli Jacopo

机构信息

Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy.

Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain.

出版信息

PLoS Comput Biol. 2025 May 8;21(5):e1013044. doi: 10.1371/journal.pcbi.1013044. eCollection 2025 May.

Abstract

Ecology has historically benefited from the characterization of statistical patterns of biodiversity within and across communities, an approach known as macroecology. Within microbial ecology, macroecological approaches have identified universal patterns of diversity and abundance that can be captured by effective models. Experimentation has simultaneously played a crucial role, as the advent of high-replication community time-series has allowed researchers to investigate underlying ecological forces. However, there remains a gap between experiments performed in the laboratory and macroecological patterns documented in natural systems, as we do not know whether these patterns can be recapitulated in the lab and whether experimental manipulations produce macroecological effects. This work aims at bridging the gap between experimental ecology and macroecology. Using high-replication time-series, we demonstrate that microbial macroecological patterns observed in nature exist in a laboratory setting, despite controlled conditions, and can be unified under the Stochastic Logistic Model of growth (SLM). We found that demographic manipulations (e.g., migration) impact observed macroecological patterns. By modifying the SLM to incorporate said manipulations alongside experimental details (e.g., sampling), we obtain predictions that are consistent with macroecological outcomes. By combining high-replication experiments with ecological models, microbial macroecology can be viewed as a predictive discipline.

摘要

从历史上看,生态学受益于对群落内部和群落间生物多样性统计模式的刻画,这种方法被称为宏观生态学。在微生物生态学中,宏观生态学方法已经确定了多样性和丰度的普遍模式,这些模式可以通过有效的模型来捕捉。实验同时也发挥了关键作用,因为高重复度群落时间序列的出现使研究人员能够探究潜在的生态力量。然而,实验室进行的实验与自然系统中记录的宏观生态模式之间仍然存在差距,因为我们不知道这些模式是否能在实验室中重现,以及实验操作是否会产生宏观生态效应。这项工作旨在弥合实验生态学与宏观生态学之间的差距。通过使用高重复度时间序列,我们证明了尽管条件受到控制,但在实验室环境中仍存在在自然界观察到的微生物宏观生态模式,并且这些模式可以在随机逻辑增长模型(SLM)下得到统一。我们发现种群统计学操作(例如迁移)会影响观察到的宏观生态模式。通过修改SLM以纳入上述操作以及实验细节(例如采样),我们得到了与宏观生态结果一致的预测。通过将高重复度实验与生态模型相结合,微生物宏观生态学可以被视为一门预测性学科。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d2d/12112161/92535069ad09/pcbi.1013044.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验