Das Anustoop, Pradhan Jayita, Kalita Simanta, Kundu Kaushik, Acharyya Paribesh, Agasti Sarit S, Biswas Kanishka
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, India.
School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, India.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202506404. doi: 10.1002/anie.202506404. Epub 2025 May 19.
Cu(I)-based low-dimensional metal halides have received significant recognition attributable to their intriguing optoelectronic properties, which instigate the emergence of self-trapped excitons (STEs) accompanied by intense broadband emissions. However, fundamental crystal structural origin of such STE is still elusive. Herein, we have synthesized Cu(I)-based mixed halide, CsCuClI nanoplates (NPs) using room temperature ligand-assisted reprecipitation method, which showed an intense blue emission with broad line-width, large Stokes shift, long photoluminescence lifetime, high photoluminescence quantum yield (PLQY) of ∼75%. Temperature-dependent PL intensity and line-width analysis unfolded strong exciton-phonon coupling in NP sample. Synchrotron X-ray pair distribution function analysis determines the local Cu off-centering, which provides the required lattice anharmonicity and softness for intense STE in CsCuClI NPs. The existence of such soft lattice structure associated with low-energy phonons was verified by sound velocity, Raman spectroscopy and low-temperature heat capacity measurements. The fluorescence microscopy and super-resolution optical imaging were implemented at single-particle level which exhibited minimal temporal PL intermittency with reasonable photostability under high-intensity illumination. Accordingly, we hypothesize that the intense broadband emission of NPs are accompanied by the local atomic off-centering-driven lattice deformation during photo-excitation process.
基于Cu(I)的低维金属卤化物因其引人入胜的光电特性而备受关注,这些特性促使自陷激子(STE)的出现,并伴随着强烈的宽带发射。然而,这种STE的基本晶体结构起源仍然难以捉摸。在此,我们使用室温配体辅助再沉淀法合成了基于Cu(I)的混合卤化物CsCuClI纳米片(NPs),其显示出强烈的蓝色发射,具有宽线宽、大斯托克斯位移、长光致发光寿命、约75%的高光致发光量子产率(PLQY)。温度依赖的PL强度和线宽分析揭示了NP样品中强烈的激子-声子耦合。同步辐射X射线对分布函数分析确定了局部Cu的偏心,这为CsCuClI NPs中强烈的STE提供了所需的晶格非谐性和柔软性。通过声速、拉曼光谱和低温热容测量验证了与低能声子相关的这种软晶格结构的存在。在单粒子水平上进行了荧光显微镜和超分辨率光学成像,在高强度照明下表现出最小的时间PL间歇性和合理的光稳定性。因此,我们假设NP的强烈宽带发射在光激发过程中伴随着局部原子偏心驱动的晶格变形。