Suppr超能文献

利用超声影像组学推进放射性阴道毒性评估:体模验证及初步临床研究

Advancing the evaluation of radiation-induced vaginal toxicity using ultrasound radiomics: Phantom validation and pilot clinical study.

作者信息

Wang Jing, Shelton Joseph, Zhou Boran, Marshall Deborah C, Joshi Himanshu, Yoshida Emi J, Yang Xiaofeng, Liu Tian

机构信息

Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA.

出版信息

Med Phys. 2025 May 8. doi: 10.1002/mp.17864.

Abstract

BACKGROUND

Radiation-induced long-term toxicities, such as vaginal stenosis, severely impact the quality of life for patients undergoing pelvic radiotherapy (RT) for gynecologic (GYN) malignancies. However, current methods for assessing these toxicities rely on subjective physical examinations and patient-reported symptoms, leading to inconsistencies in grading and suboptimal management.

PURPOSE

This pilot study investigates the potential of ultrasound-based radiomics, specifically gray level co-occurrence matrix (GLCM) texture metrics, as objective and quantitative biomarkers for evaluating long-term radiation-induced vaginal toxicity.

METHODS

A two-phase study was conducted. First, a phantom study was performed to identify robust GLCM texture features with low variability [coefficient of variance (COV) < 10%] across ultrasound brightness settings. In a subsequent clinical pilot study, 22 female participants were recruited: 10 had received pelvic radiotherapy (RT) with follow-up times ranging from 8 to 23 months, while 12 served as non-RT controls. All participants underwent transvaginal ultrasound imaging, and GLCM texture features were extracted for analysis. A Mann-Whitney U test was used to assess between-group differences of distribution, with a p value < 0.05 identified as statistically significance. Cohen's d values were calculated to quantify effect sizes, with a value of greater than 0.8 indicating large effects.

RESULTS

Seventeen GLCM features demonstrated robustness (COVs < 10%) across brightness settings in the phantom study, including two with COVs < 1%, 10 with COVs between 1% and 5%, and five with COVs between 5% and 10%. In the clinical study, four texture features showed significant differences between the treated group and controls (p < 0.05). Specifically, the treated group exhibited a 15.5% increase in correlation (p = 0.03), a 35.8% decrease in contrast (p = 0.03), a 10.1% decrease in difference entropy (p = 0.04), and a 17.9% decrease in dissimilarity (p = 0.07).

CONCLUSION

This phantom and pilot study demonstrated that ultrasound GLCM features can serve as reliable quantitative biomarkers for assessing radiation-induced vaginal toxicity in female patients receiving pelvic RT for GYN cancers. Implementing these biomarkers in clinical practice could enhance the objectivity of toxicity evaluations, leading to more consistent grading and better-informed follow-up care for patients.

摘要

背景

辐射诱发的长期毒性反应,如阴道狭窄,严重影响接受盆腔放疗(RT)的妇科(GYN)恶性肿瘤患者的生活质量。然而,目前评估这些毒性反应的方法依赖主观体格检查和患者报告的症状,导致分级不一致且管理欠佳。

目的

本初步研究调查基于超声的放射组学,特别是灰度共生矩阵(GLCM)纹理指标,作为评估长期辐射诱发阴道毒性的客观定量生物标志物的潜力。

方法

进行了一项两阶段研究。首先,进行了一项体模研究,以确定在超声亮度设置范围内具有低变异性[变异系数(COV)<10%]的稳健GLCM纹理特征。在随后的临床初步研究中,招募了22名女性参与者:10名接受了盆腔放疗,随访时间为8至23个月,而12名作为非放疗对照。所有参与者均接受经阴道超声成像,并提取GLCM纹理特征进行分析。使用Mann-Whitney U检验评估组间分布差异,p值<0.05被确定为具有统计学意义。计算Cohen's d值以量化效应大小,值大于0.8表明效应大。

结果

在体模研究中,17个GLCM特征在亮度设置范围内表现出稳健性(COV<10%),包括2个COV<1%,10个COV在1%至5%之间,5个COV在5%至10%之间。在临床研究中,4个纹理特征在治疗组和对照组之间显示出显著差异(p<0.05)。具体而言,治疗组的相关性增加了15.5%(p=0.03),对比度降低了35.8%(p=0.03),差异熵降低了10.1%(p=0.04),不相似性降低了17.9%(p=0.07)。

结论

这项体模和初步研究表明,超声GLCM特征可作为评估接受盆腔放疗的妇科癌症女性患者辐射诱发阴道毒性的可靠定量生物标志物。在临床实践中应用这些生物标志物可提高毒性评估的客观性,从而实现更一致的分级并为患者提供更明智的后续护理。

相似文献

5
Sertindole for schizophrenia.用于治疗精神分裂症的舍吲哚。
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.

本文引用的文献

2
The impact of radiation therapy on vaginal biomechanical properties.放射治疗对阴道生物力学特性的影响。
Eur J Obstet Gynecol Reprod Biol. 2021 Sep;264:36-40. doi: 10.1016/j.ejogrb.2021.06.046. Epub 2021 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验