Ti Xiuxiu, Zuo Hui, Zhao Guochun, Li Yuwei, Du Minghui, Xu Liwen, Li Shengnan, Shan Zhaoliang, Gao Yuxue, Gan Guangming, Wang Yan, Zhang Qing
State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
J Biol Chem. 2025 May 8;301(6):110208. doi: 10.1016/j.jbc.2025.110208.
Loss of function of parkin leads to mitochondrial dysfunction, which is closely related to Parkinson's disease. However, the in vivo mechanism is far from clear. One dogma is that impaired Parkin causes dysfunction of mitophagy mediated by Pink1-Parkin axis. The other is that impaired Parkin causes Mfn accumulation which leads to mitochondrial dysfunction. Surprisingly, in Drosophila muscles, the first dogma is not applicable; for the second dogma, our study suggests that Parkin mediates mitochondrial dysfunction through the synergy of both Marf and mitochondrial protein mRpL18 got from our genome-wide screen, whose RNAi rescues parkin RNAi phenotype. Mechanistically, we found that impaired Parkin upregulated both transcription and protein levels of mRpL18 dependent on its E3 ligase activity, causing mRpL18 accumulation outside mitochondria. Consequently, cytosolic-accumulated mRpL18 competitively bound Drp1, leading to the reduction of the binding of Drp1 to its receptor Fis1, which finally inhibited mitochondrial fission and tipped the balance to mitochondrial hyperfusion, thereby affected the mitochondrial function. Taken together, our study suggests that impaired Parkin causes mitochondrial hyperfusion due to two reasons: (1) Parkin defect impairs Pink1-Parkin axis-mediated Marf degradation, which promotes mitochondrial fusion; (2) Parkin defect causes mRpL18 accumulation, which inhibits Drp1/Fis1-mediated mitochondrial fission. These two ways together drive Parkin-mediated mitochondrial hyperfusion. Therefore, knockdown of either marf or mRpL18 can prevent mitochondrial hyperfusion, leading to the rescue of Parkin defect-triggered fly wing phenotypes. Overall, our study unveils a new facet of how Parkin regulates mitochondrial morphology, which provides new insights for the understanding and treatment of Parkinson's disease.
帕金森蛋白功能丧失会导致线粒体功能障碍,这与帕金森病密切相关。然而,其体内机制尚不清楚。一种观点认为,帕金森蛋白功能受损会导致由Pink1-帕金森蛋白轴介导的线粒体自噬功能障碍。另一种观点认为,帕金森蛋白功能受损会导致线粒体融合蛋白积累,进而导致线粒体功能障碍。令人惊讶的是,在果蝇肌肉中,第一种观点并不适用;对于第二种观点,我们的研究表明,帕金森蛋白通过我们全基因组筛选得到的Marf和线粒体蛋白mRpL18的协同作用介导线粒体功能障碍,其RNA干扰可挽救帕金森蛋白RNA干扰表型。从机制上讲,我们发现受损的帕金森蛋白依赖其E3连接酶活性上调mRpL18的转录水平和蛋白水平,导致mRpL18在线粒体外积累。因此,胞质中积累的mRpL18竞争性结合动力相关蛋白1(Drp1),导致Drp1与其受体Fis1的结合减少,最终抑制线粒体分裂并使平衡向线粒体过度融合倾斜,从而影响线粒体功能。综上所述,我们的研究表明,帕金森蛋白功能受损导致线粒体过度融合有两个原因:(1)帕金森蛋白缺陷损害Pink1-帕金森蛋白轴介导的Marf降解,促进线粒体融合;(2)帕金森蛋白缺陷导致mRpL18积累,抑制Drp1/Fis1介导的线粒体分裂。这两种方式共同导致帕金森蛋白介导的线粒体过度融合。因此,敲低Marf或mRpL18均可防止线粒体过度融合,从而挽救帕金森蛋白缺陷引发的果蝇翅膀表型。总的来说,我们的研究揭示了帕金森蛋白调节线粒体形态的一个新方面,为理解和治疗帕金森病提供了新的见解。