Deng Hansong, Dodson Mark W, Huang Haixia, Guo Ming
Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14503-8. doi: 10.1073/pnas.0803998105. Epub 2008 Sep 17.
Mutations in PTEN-induced kinase 1 (pink1) or parkin cause autosomal-recessive and some sporadic forms of Parkinson's disease. pink1 acts upstream of parkin in a common genetic pathway to regulate mitochondrial integrity in Drosophila. Mitochondrial morphology is maintained by a dynamic balance between the opposing actions of mitochondrial fusion, controlled by Mitofusin (mfn) and Optic atrophy 1 (opa1), and mitochondrial fission, controlled by drp1. Here, we explore interactions between pink1/parkin and the mitochondrial fusion/fission machinery. Muscle-specific knockdown of the fly homologue of Mfn (Marf) or opa1, or overexpression of drp1, results in significant mitochondrial fragmentation. Mfn-knockdown flies also display altered cristae morphology. Interestingly, knockdown of Mfn or opa1 or overexpression of drp1, rescues the phenotypes of muscle degeneration, cell death, and mitochondrial abnormalities in pink1 or parkin mutants. In the male germline, we also observe genetic interactions between pink1 and the testes-specific mfn homologue fuzzy onion, and between pink1 and drp1. Our data suggest that the pink1/parkin pathway promotes mitochondrial fission and/or inhibits fusion by negatively regulating mfn and opa1 function, and/or positively regulating drp1. However, pink1 and parkin mutant flies show distinct mitochondrial phenotypes from drp1 mutant flies, and flies carrying a heterozygous mutation in drp1 enhance the pink1-null phenotype, resulting in lethality. These results suggest that pink1 and parkin are likely not core components of the drp1-mediated mitochondrial fission machinery. Modification of fusion and fission may represent a novel therapeutic strategy for Parkinson's disease.
PTEN诱导激酶1(pink1)或帕金森蛋白的突变会导致常染色体隐性遗传以及某些散发性帕金森病。在果蝇中,pink1在一条共同的遗传途径中位于帕金森蛋白的上游,以调节线粒体的完整性。线粒体形态通过由线粒体融合蛋白(mfn)和视神经萎缩蛋白1(opa1)控制的线粒体融合与由动力相关蛋白1(drp1)控制的线粒体分裂这两种相反作用之间的动态平衡来维持。在此,我们探究pink1/帕金森蛋白与线粒体融合/分裂机制之间的相互作用。果蝇中mfn(Marf)或opa1的同源物在肌肉特异性敲低,或drp1的过表达,都会导致明显的线粒体碎片化。mfn敲低的果蝇还表现出线粒体嵴形态的改变。有趣的是,mfn或opa1的敲低或drp1的过表达可挽救pink1或帕金森蛋白突变体中的肌肉退化、细胞死亡和线粒体异常的表型。在雄性生殖系中,我们还观察到pink1与睾丸特异性mfn同源物模糊葱之间以及pink1与drp1之间的遗传相互作用。我们的数据表明,pink1/帕金森蛋白途径通过负向调节mfn和opa1的功能,和/或正向调节drp1来促进线粒体分裂和/或抑制融合。然而,pink1和帕金森蛋白突变体果蝇与drp1突变体果蝇表现出不同的线粒体表型,并且携带drp1杂合突变的果蝇会增强pink1基因缺失的表型,导致致死性。这些结果表明,pink1和帕金森蛋白可能不是drp1介导的线粒体分裂机制的核心组成部分。融合和分裂的调节可能代表了一种治疗帕金森病的新策略。