Davidovich Irina, Levin Carina, Talmon Yeshayahu
Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, Israel.
Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.
J Microsc. 2025 Aug;299(2):132-138. doi: 10.1111/jmi.13424. Epub 2025 May 9.
Cryogenic scanning electron microscopy (cryo-SEM) is a powerful imaging technique used in cellular biology, providing high-resolution micrographs that show the complexity and dynamics of biological systems. The use of high-pressure freezing (HPF) for specimen fixation preserves cellular structures in their native, hydrated state, avoiding the artefacts introduced by conventional chemical fixation, while modern microscopes provide high-resolution imaging at low electron acceleration voltage, giving fine structural details. That makes cryo-SEM a unique tool for understanding cellular complexity. However, operating the SEM at cryogenic conditions requires careful optimisation of working parameters to avoid artefacts. In our work, we explore the potential of cryo-SEM for haematology and general cell studies. We discuss the impact of a combination of different signals and work distance on specimen appearance and present examples of studies on healthy human blood cells under physiological conditions. Our findings illustrate the breadth of information that can be obtained from these data, highlighting the technique's capacity to enhance our understanding of cellular biology.
低温扫描电子显微镜(cryo-SEM)是细胞生物学中一种强大的成像技术,可提供高分辨率显微照片,展示生物系统的复杂性和动态性。使用高压冷冻(HPF)进行标本固定可将细胞结构保持在其天然的水合状态,避免传统化学固定引入的假象,而现代显微镜可在低电子加速电压下提供高分辨率成像,呈现精细的结构细节。这使得低温扫描电子显微镜成为理解细胞复杂性的独特工具。然而,在低温条件下操作扫描电子显微镜需要仔细优化工作参数以避免假象。在我们的工作中,我们探索了低温扫描电子显微镜在血液学和一般细胞研究中的潜力。我们讨论了不同信号和工作距离的组合对标本外观的影响,并展示了在生理条件下对健康人类血细胞研究的实例。我们的研究结果说明了从这些数据中可以获得的信息广度,突出了该技术增强我们对细胞生物学理解的能力。