Suppr超能文献

化学固定对细胞纳米结构的影响。

The effects of chemical fixation on the cellular nanostructure.

作者信息

Li Yue, Almassalha Luay M, Chandler John E, Zhou Xiang, Stypula-Cyrus Yolanda E, Hujsak Karl A, Roth Eric W, Bleher Reiner, Subramanian Hariharan, Szleifer Igal, Dravid Vinayak P, Backman Vadim

机构信息

Applied Physics Program, Northwestern University, Evanston, IL, USA.

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.

出版信息

Exp Cell Res. 2017 Sep 15;358(2):253-259. doi: 10.1016/j.yexcr.2017.06.022. Epub 2017 Jun 30.

Abstract

Chemical fixation is nearly indispensable in the biological sciences, especially in circumstances where cryo-fixation is not applicable. While universally employed for the preservation of cell organization, chemical fixatives often introduce artifacts that can confound identification of true structures. Since biological research is increasingly probing ever-finer details of the cellular architecture, it is critical to understand the nanoscale transformation of the cellular organization due to fixation both systematically and quantitatively. In this work, we employed Partial Wave Spectroscopic (PWS) Microscopy, a nanoscale sensitive and label-free live cell spectroscopic-imaging technique, to analyze the effects of the fixation process through three commonly used fixation protocols for cells in vitro. In each method investigated, we detected dramatic difference in both nuclear and cytoplasmic nanoarchitecture between live and fixed states. But significantly, despite the alterations in cellular nanoscale organizations after chemical fixation, the population differences in chromatin structure (e.g. induced by a specific chemotherapeutic agent) remains. In conclusion, we demonstrated that the nanoscale cellular arrangement observed in fixed cells was fundamentally divorced from that in live cells, thus the quantitative analysis is only meaningful on the population level. This finding highlights the importance of live cell imaging techniques with nanoscale sensitivity or cryo-fixation in the interrogation of cellular structure, to complement more traditional chemical fixation methods.

摘要

化学固定在生物科学领域几乎不可或缺,尤其是在无法进行冷冻固定的情况下。虽然化学固定剂普遍用于保存细胞结构,但它们常常会引入假象,可能混淆对真实结构的识别。由于生物学研究越来越深入地探究细胞结构的细微细节,系统且定量地了解由于固定导致的细胞结构在纳米尺度上的转变至关重要。在这项工作中,我们采用了部分波谱显微镜(PWS),这是一种对纳米尺度敏感且无需标记的活细胞光谱成像技术,通过三种常用的体外细胞固定方案来分析固定过程的影响。在研究的每种方法中,我们都检测到活细胞状态和固定细胞状态在细胞核和细胞质纳米结构上存在显著差异。但重要的是,尽管化学固定后细胞的纳米尺度组织发生了改变,但染色质结构的群体差异(例如由特定化疗药物诱导的差异)仍然存在。总之,我们证明了固定细胞中观察到的纳米尺度细胞排列与活细胞中的排列根本不同,因此定量分析仅在群体水平上有意义。这一发现凸显了具有纳米尺度敏感性的活细胞成像技术或冷冻固定在研究细胞结构方面的重要性,以补充更传统的化学固定方法。

相似文献

1
The effects of chemical fixation on the cellular nanostructure.
Exp Cell Res. 2017 Sep 15;358(2):253-259. doi: 10.1016/j.yexcr.2017.06.022. Epub 2017 Jun 30.
2
Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology.
PLoS One. 2019 Jul 22;14(7):e0219006. doi: 10.1371/journal.pone.0219006. eCollection 2019.
3
Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6372-E6381. doi: 10.1073/pnas.1608198113. Epub 2016 Oct 4.
4
Feasibility of high pressure freezing with freeze substitution after long-term storage in chemical fixatives.
Microsc Res Tech. 2013 Sep;76(9):942-6. doi: 10.1002/jemt.22252. Epub 2013 Jul 1.
9
Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy.
Methods Mol Biol. 2018;1745:337-360. doi: 10.1007/978-1-4939-7680-5_19.

引用本文的文献

1
New Approaches to Old Techniques in Cell Handling for Microscopy.
Cells. 2025 Aug 18;14(16):1271. doi: 10.3390/cells14161271.
2
Cryo-SEM in haematological research.
J Microsc. 2025 Aug;299(2):132-138. doi: 10.1111/jmi.13424. Epub 2025 May 9.
3
High-Resolution Correlative Microscopy Approach for Nanobio Interface Studies of Nanoparticle-Induced Lung Epithelial Cell Damage.
ACS Nano. 2025 May 20;19(19):18227-18243. doi: 10.1021/acsnano.4c17838. Epub 2025 May 9.
4
Chromatin Organization Governs Transcriptional Response and Plasticity of Cancer Stem Cells.
Adv Sci (Weinh). 2025 May;12(17):e2407426. doi: 10.1002/advs.202407426. Epub 2025 Mar 7.
5
Cryoimmobilized anther analysis reveals new ultrastructural insights into (Cyperaceae) asymmetrical microsporogenesis.
Front Plant Sci. 2025 Jan 21;15:1518369. doi: 10.3389/fpls.2024.1518369. eCollection 2024.
6
Mature chromatin packing domains persist after RAD21 depletion in 3D.
Sci Adv. 2025 Jan 24;11(4):eadp0855. doi: 10.1126/sciadv.adp0855.
8
Mass-Guided Single-Cell MALDI Imaging of Low-Mass Metabolites Reveals Cellular Activation Markers.
Adv Sci (Weinh). 2025 Feb;12(5):e2410506. doi: 10.1002/advs.202410506. Epub 2024 Dec 12.
9
Internalization and Cellular Fate of Protein Corona-Coated Nanoparticles by Multimodal Multi-Scale Microscopy.
Small. 2025 Jun;21(22):e2409065. doi: 10.1002/smll.202409065. Epub 2024 Dec 8.
10
Tracing the Chromatin: From 3C to Live-Cell Imaging.
Chem Biomed Imaging. 2024 Jun 25;2(10):659-682. doi: 10.1021/cbmi.4c00033. eCollection 2024 Oct 28.

本文引用的文献

1
Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6372-E6381. doi: 10.1073/pnas.1608198113. Epub 2016 Oct 4.
2
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Nature. 2016 Jan 21;529(7586):418-22. doi: 10.1038/nature16496. Epub 2016 Jan 13.
3
Comparing different methods to fix and to dehydrate cells on alginate hydrogel scaffolds using scanning electron microscopy.
Microsc Res Tech. 2015 Jul;78(7):553-61. doi: 10.1002/jemt.22508. Epub 2015 Apr 14.
4
Doxorubicin, DNA torsion, and chromatin dynamics.
Biochim Biophys Acta. 2014 Jan;1845(1):84-9. doi: 10.1016/j.bbcan.2013.12.002. Epub 2013 Dec 19.
5
Artefacts: a diagnostic dilemma - a review.
J Clin Diagn Res. 2013 Oct;7(10):2408-13. doi: 10.7860/JCDR/2013/6170.3541. Epub 2013 Oct 5.
7
Immunogold cytochemistry in neuroscience.
Nat Neurosci. 2013 Jul;16(7):798-804. doi: 10.1038/nn.3418. Epub 2013 Jun 25.
8
TALEN-mediated precise genome modification by homologous recombination in zebrafish.
Nat Methods. 2013 Apr;10(4):329-31. doi: 10.1038/nmeth.2374. Epub 2013 Feb 24.
9
Staining and embedding the whole mouse brain for electron microscopy.
Nat Methods. 2012 Dec;9(12):1198-201. doi: 10.1038/nmeth.2213. Epub 2012 Oct 21.
10
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验