Suppr超能文献

患者特异性基因共表达网络揭示了肺腺癌的新亚型和预测性生物标志物。

Patient-specific gene co-expression networks reveal novel subtypes and predictive biomarkers in lung adenocarcinoma.

作者信息

López-Sánchez Patricio, Ávila-Moreno Federico, Hernández-Lemus Enrique, Kuijjer Marieke L, Espinal-Enríquez Jesús

机构信息

Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.

Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico.

出版信息

NPJ Syst Biol Appl. 2025 May 9;11(1):44. doi: 10.1038/s41540-025-00522-0.

Abstract

Lung adenocarcinoma (LUAD) is a highly heterogenous and aggressive form of non-small cell lung cancer (NSCLC). The use of genome-wide gene co-expression networks (GCNs) has been paramount to describe changes in the transcriptional regulatory programs found between diseased and healthy states of LUAD. Recently, studies have shown that multiple cancerous phenotypes share a distinct GCN architecture, suggesting that network topology holds promise for understanding disease pathology. However, conventional GCN inference methods struggle to capture the inherent context-specificity within a patient population, thus flattening its heterogeneity. To address this issue, the use of single-sample network (SSN) modelling has emerged as a promising solution into studying heterogeneous traits of cancer through network-based approaches. Here, we reconstructed patient-specific GCNs (n=334) using the LIONESS equation and mutual information as the network inference method. Unsupervised analysis revealed six novel LUAD subtypes based on inter-patient network similarity, each with distinct network motifs reflecting unique biological programs. Supervised analysis, employing regularized Cox regression, identified 12 genes (CHRDL2, SPP2, VAC14, IRF5, GUCY1B1, NCS1, RRM2B, EIF5A2, CCDC62, CTCFL, XG, and TP53INP2) whose weighted degree in SSNs is predictive of patient survival in LUAD. These findings suggest that topological features of SSNs offer valuable insights into the context-specific nature of LUAD malignancy, highlighting the potential of SSN-based approaches for further research.

摘要

肺腺癌(LUAD)是一种高度异质性且侵袭性强的非小细胞肺癌(NSCLC)形式。全基因组基因共表达网络(GCN)的应用对于描述LUAD疾病状态与健康状态之间转录调控程序的变化至关重要。最近,研究表明多种癌性表型共享独特的GCN结构,这表明网络拓扑结构在理解疾病病理学方面具有潜力。然而,传统的GCN推理方法难以捕捉患者群体中固有的上下文特异性,从而使其异质性变得扁平。为了解决这个问题,单样本网络(SSN)建模的应用已成为通过基于网络的方法研究癌症异质性特征的一种有前途的解决方案。在这里,我们使用LIONESS方程和互信息作为网络推理方法重建了患者特异性GCN(n = 334)。无监督分析基于患者间网络相似性揭示了六种新型LUAD亚型,每种亚型都有独特的网络基序,反映了独特的生物学程序。使用正则化Cox回归的监督分析确定了12个基因(CHRDL2、SPP2、VAC14、IRF5、GUCY1B1、NCS1、RRM2B、EIF5A2、CCDC62、CTCFL、XG和TP53INP2),其在SSN中的加权度可预测LUAD患者的生存情况。这些发现表明,SSN的拓扑特征为LUAD恶性肿瘤的上下文特异性本质提供了有价值的见解,突出了基于SSN的方法在进一步研究中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce2/12064794/4b347e97a43d/41540_2025_522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验