Suppr超能文献

基于表面肌电引导的分子亚型分析及机器学习模型揭示非小细胞肺腺癌新的预后生物标志物和治疗靶点。

SMR-guided molecular subtyping and machine learning model reveals novel prognostic biomarkers and therapeutic targets in non-small cell lung adenocarcinoma.

作者信息

Wang Baozhen, Yin Yichen, Wang Anqi, Liu Weidi, Chen Jing, Li Tao

机构信息

School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.

Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.

出版信息

Sci Rep. 2025 Jan 10;15(1):1640. doi: 10.1038/s41598-025-85471-8.

Abstract

Non-small cell lung adenocarcinoma (LUAD) is a markedly heterogeneous disease, with its underlying molecular mechanisms and prognosis prediction presenting ongoing challenges. In this study, we integrated data from multiple public datasets, including TCGA, GSE31210, and GSE13213, encompassing a total of 867 tumor samples. By employing Mendelian randomization (MR) analysis, machine learning techniques, and comprehensive bioinformatics approaches, we conducted an in-depth investigation into the molecular characteristics, prognostic markers, and potential therapeutic targets of LUAD. Our analysis identified 321 genes significantly associated with LUAD, with CENP-A, MCM7, and DLGAP5 emerging as highly connected nodes in network analyses. By performing correlation analysis and Cox regression analysis, we identified 26 prognostic genes and classified LUAD samples into two molecular subtypes with significantly distinct survival outcomes. The Random Survival Forest (RSF) model exhibited robust prognostic predictive capabilities across multiple independent cohorts (AUC > 0.75). Beyond merely predicting patient outcomes, this model also captures key features of the tumor immune microenvironment and potential therapeutic responses. Functional enrichment analysis revealed the complex interplay of cell cycle regulation, DNA repair, immune response, and metabolic reprogramming in the progression of LUAD. Furthermore, we observed a strong correlation between risk scores and the expression of specific cytokines, such as CCL17, CCR2, and CCL20, suggesting novel avenues for developing cytokine network-based therapeutic strategies. This study offers fresh insights into the molecular subtyping, prognostic prediction, and personalized therapeutic decision-making in LUAD, laying a critical foundation for future clinical applications and targeted therapy research.

摘要

非小细胞肺腺癌(LUAD)是一种显著异质性的疾病,其潜在的分子机制和预后预测一直面临挑战。在本研究中,我们整合了来自多个公共数据集的数据,包括TCGA、GSE31210和GSE13213,共涵盖867个肿瘤样本。通过运用孟德尔随机化(MR)分析、机器学习技术和综合生物信息学方法,我们对LUAD的分子特征、预后标志物和潜在治疗靶点进行了深入研究。我们的分析确定了321个与LUAD显著相关的基因,其中CENP-A、MCM7和DLGAP5在网络分析中成为高度连接的节点。通过进行相关性分析和Cox回归分析,我们确定了26个预后基因,并将LUAD样本分为两种分子亚型,其生存结果有显著差异。随机生存森林(RSF)模型在多个独立队列中表现出强大的预后预测能力(AUC > 0.75)。该模型不仅能够预测患者的预后,还能捕捉肿瘤免疫微环境的关键特征以及潜在的治疗反应。功能富集分析揭示了细胞周期调控、DNA修复、免疫反应和代谢重编程在LUAD进展中的复杂相互作用。此外,我们观察到风险评分与特定细胞因子(如CCL17、CCR2和CCL20)的表达之间存在强烈相关性,这为开发基于细胞因子网络的治疗策略提供了新途径。本研究为LUAD的分子分型、预后预测和个性化治疗决策提供了新的见解,为未来的临床应用和靶向治疗研究奠定了关键基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a7/11723915/f11a314431de/41598_2025_85471_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验