Suppr超能文献

使用具有机器学习功能的双波段微波传感器进行无创血糖监测。

Noninvasive blood glucose monitoring using a dual band microwave sensor with machine learning.

作者信息

Farouk Mariam, El-Hameed Anwer S Abd, Eldamak Angie R, Elsheakh Dalia N

机构信息

Electrical Department, Faculty of Engineering and Technology, Badr University in Cairo, Badr, 11829, Egypt.

Microstrip Department, Electronics Research Institute (ERI), El Nozha, Giza, 4473221, Egypt.

出版信息

Sci Rep. 2025 May 9;15(1):16271. doi: 10.1038/s41598-025-94367-6.

Abstract

The potential for continuous non-invasive blood glucose monitoring has attracted a lot of interest in the field of medical diagnostics. This paper provides a new shape of a dual-band bandpass filter (DBBPF) acting as a microwave transmission line sensor for continuous non-invasive blood glucose monitoring operating at 2.45 and 5.2 GHz. The proposed system uses the interaction between biological tissues and microwave signals to correctly assess blood glucose levels. The proposed dual-band bandpass filter (DBBPF), comprises three split ring resonator (SRR) cells with different dimensions. It is designed to operate as a sensor with improved sensitivity, compact dimensions, and a high-quality factor. It also ensures a reasonable bandwidth for lower and higher bands of 8.6 and 2%, respectively in the industrial, scientific, medical band, and the wireless local area network (ISM and WLAN) Bands. A dual-band filter enhances measurement sensitivity and specificity by targeting specific frequency ranges where glucose exhibits distinctive dielectric responses, thereby providing redundant data points for accurate glucose level determination. Glucose concentrations can be evaluated by measuring the changes in the dielectric properties of blood by sending microwave waves through the body and assessing the collected S-parameter signals. The measurement parameters encompass the reflection, phase, magnitude, as well as transmission parameters. This yields multiple evaluations of the glucose-induced alterations. Simulations are validated through laboratory measurements incorporating a phantom finger model for capturing realistic outcomes. Machine learning models are employed to analyze the sensor data, improving the accuracy of diabetes detection. Simulations are validated through laboratory measurements incorporating a phantom finger model for capturing realistic outcomes. A Cole-Cole model, implemented using MATLAB, is utilized for the phantom finger model. The main results reveal the success of the proposed transmission-based microwave glucose sensing, with a remarkable sensitivity of 1 ~ 1.5 dB for glucose level change up to 200 mg/dL.

摘要

连续无创血糖监测的潜力在医学诊断领域引起了广泛关注。本文提出了一种新型双带通滤波器(DBBPF),作为用于连续无创血糖监测的微波传输线传感器,工作在2.45GHz和5.2GHz频段。该系统利用生物组织与微波信号之间的相互作用来正确评估血糖水平。所提出的双带通滤波器(DBBPF)由三个尺寸不同的裂环谐振器(SRR)单元组成。它被设计成一种具有更高灵敏度、紧凑尺寸和高品质因数的传感器。它还确保在工业、科学、医疗频段以及无线局域网(ISM和WLAN)频段中,低频段和高频段分别有8.6%和2%的合理带宽。双带通滤波器通过针对葡萄糖呈现独特介电响应的特定频率范围来提高测量灵敏度和特异性,从而为准确测定血糖水平提供冗余数据点。通过向人体发送微波并评估收集到的S参数信号,测量血液介电特性的变化,从而可以评估葡萄糖浓度。测量参数包括反射、相位、幅度以及传输参数。这就对葡萄糖引起的变化进行了多次评估。通过结合用于获取实际结果的仿体手指模型的实验室测量来验证模拟结果。采用机器学习模型分析传感器数据,提高糖尿病检测的准确性。通过结合用于获取实际结果的仿体手指模型的实验室测量来验证模拟结果。使用MATLAB实现的Cole-Cole模型用于仿体手指模型。主要结果表明所提出的基于传输的微波葡萄糖传感取得了成功,对于高达200mg/dL的血糖水平变化,灵敏度显著达到1~1.5dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/944e/12064702/2e77c430143d/41598_2025_94367_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验