Suppr超能文献

通过非晶态工程构建匹配界面以增强准固态锂碘电池中的锂离子传输

Constructing Matching Interfaces by Amorphous Engineering for Enhanced Lithium Ion Transport in Quasi-Solid-State Lithium-Iodine Batteries.

作者信息

Gu Jiapei, Dong Chenxu, Zhu Yuxin, Liu Haoyun, Ji Juan, Yu Yongkun, Ma Changning, Zhou Cheng, Mai Liqiang, Xu Xu

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.

Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., High Technology Industrial Development Zone, Zhengzhou, 450001, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul;64(29):e202507184. doi: 10.1002/anie.202507184. Epub 2025 May 16.

Abstract

Quasi-solid-state lithium-iodine (Li-I) batteries have shown prospects as their high theoretical capacity, high safety, and abundant iodine resources. However, the interface between the crystalline filler and the flexible polymer skeleton of composite solid electrolytes exhibits inadequate bonding, leading to higher interface energy and sluggish migration dynamics of Li. In this work, a continuous interface solid electrolyte is designed by combining the atomic structure rearrangement of metal-organic framework (MOF) to achieve interface coupling between MOF and aramid fiber. Based on the experimental results and theoretical calculations, the amorphous engineering promotes Li migration and polyiodide confinement effects for Li-I batteries. The batteries show a high capacity of 170.7 mAh g at 5 C and achieve a capacity retention rate of 97.8% after 450 cycles. More impressively, the batteries achieve a long life of 3000 cycles at the high current density of 20 C with a good capacity retention of 94.1%. This work reveals the mechanism of coupled interface with structure matching in Li migration and polyiodide integration process, providing guidance for the design of novel composite solid electrolytes to achieve high-performance Li-I batteries.

摘要

准固态锂碘(Li-I)电池因其高理论容量、高安全性和丰富的碘资源而展现出应用前景。然而,复合固体电解质的晶体填料与柔性聚合物骨架之间的界面结合不足,导致更高的界面能和Li迁移动力学迟缓。在这项工作中,通过结合金属有机框架(MOF)的原子结构重排设计了一种连续界面固体电解质,以实现MOF与芳纶纤维之间的界面耦合。基于实验结果和理论计算,非晶态工程促进了Li-I电池的Li迁移和多碘化物限制效应。该电池在5 C下表现出170.7 mAh g的高容量,在450次循环后容量保持率达到97.8%。更令人印象深刻的是,该电池在20 C的高电流密度下实现了3000次循环的长寿命,良好的容量保持率为94.1%。这项工作揭示了Li迁移和多碘化物整合过程中结构匹配的耦合界面机制,为设计新型复合固体电解质以实现高性能Li-I电池提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验