Suppr超能文献

通过飞秒激光诱导微图案和纳米形貌调控氧化锆生物材料的细胞行为和抗菌性能

Tailoring Cell Behavior and Antibacterial Properties on Zirconia Biomaterials through Femtosecond Laser-Induced Micropatterns and Nanotopography.

作者信息

Garcia-de-Albeniz Nerea, Müller Daniel W, Mücklich Frank, Ginebra Maria-Pau, Jiménez-Piqué Emilio, Mas-Moruno Carlos

机构信息

Center for Structural Integrity, Reliability and Micromechanics of Materials (CIEFMA), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Av. Eduard Maristany, 16, Barcelona 08019, Spain.

Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Av. Eduard Maristany, 16, Barcelona 08019, Spain.

出版信息

ACS Appl Mater Interfaces. 2025 May 21;17(20):29082-29099. doi: 10.1021/acsami.4c22433. Epub 2025 May 10.

Abstract

This study explores the potential of ultrashort pulsed-direct laser interference patterning (USP-DLIP) to fabricate micropatterns on zirconia surfaces, aimed at enhancing their cell-instructive and antibacterial properties for biomedical applications. A femtosecond laser was employed to fabricate 3 and 10 μm periodic linear (L3 and L10) and grid (G3 and G10) patterns on tetragonal zirconia polycrystal stabilized with 3% molar yttrium oxide (3Y-TZP). The patterns exhibited homogeneous, high-aspect-ratio structures with laser-induced nanotopography within the grooves while maintaining minimal surface damage. All patterns significantly enhanced human mesenchymal stem cell (hMSCs) adhesion, spreading, and migration through topographical guidance and nanotopography-induced cell anchoring. Pattern geometry influenced cell morphology and migration: linear patterns induced high elongation and alignment along the grooves, leading to unidirectional migration, while grid structures promoted widespread cells with bidirectional alignment, promoting bidirectional migration. Antibacterial assessment using () (Gram-negative) and () (Gram-positive) revealed a size-dependent bacterial response. The patterns of lower periodicity (L3 and G3) showed superior antibacterial properties, reducing bacterial colonization through distinct mechanisms: mechanical trapping for (25% reduction) and disruption of bacterial aggregation for (30% reduction). Coculture experiments with hMSCs and bacteria confirmed that L3 and G3 surfaces effectively combined enhanced cell adhesion with reduced bacterial colonization, highlighting the potential of USP-DLIP for developing multifunctional cell-instructive and antibacterial biomaterial surfaces.

摘要

本研究探索了超短脉冲直接激光干涉图案化(USP-DLIP)在氧化锆表面制造微图案的潜力,旨在增强其在生物医学应用中的细胞诱导和抗菌性能。采用飞秒激光在含有3摩尔%氧化钇稳定的四方氧化锆多晶体(3Y-TZP)上制造3μm和10μm周期性的线性(L3和L10)和网格(G3和G10)图案。这些图案呈现出均匀的、高纵横比的结构,在凹槽内具有激光诱导的纳米形貌,同时保持最小的表面损伤。所有图案通过形貌引导和纳米形貌诱导的细胞锚定,显著增强了人间充质干细胞(hMSCs)的粘附、铺展和迁移。图案几何形状影响细胞形态和迁移:线性图案诱导细胞沿着凹槽高度伸长和排列,导致单向迁移,而网格结构促进细胞广泛分布并双向排列,促进双向迁移。使用大肠杆菌(革兰氏阴性菌)和金黄色葡萄球菌(革兰氏阳性菌)进行的抗菌评估显示出细菌反应的尺寸依赖性。较低周期性的图案(L3和G3)表现出优异的抗菌性能,通过不同机制减少细菌定植:对大肠杆菌通过机械捕获(减少25%),对金黄色葡萄球菌通过破坏细菌聚集(减少30%)。hMSCs与细菌的共培养实验证实,L3和G3表面有效地将增强的细胞粘附与减少的细菌定植相结合,突出了USP-DLIP在开发多功能细胞诱导和抗菌生物材料表面方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验