Suppr超能文献

优化电子传递链以可持续地提高光合作用。

Optimizing the electron transport chain to sustainably improve photosynthesis.

机构信息

Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Plant Physiol. 2023 Nov 22;193(4):2398-2412. doi: 10.1093/plphys/kiad490.

Abstract

Genetically improving photosynthesis is a key strategy to boosting crop production to meet the rising demand for food and fuel by a rapidly growing global population in a warming climate. Many components of the photosynthetic apparatus have been targeted for genetic modification for improving photosynthesis. Successful translation of these modifications into increased plant productivity in fluctuating environments will depend on whether the electron transport chain (ETC) can support the increased electron transport rate without risking overreduction and photodamage. At present atmospheric conditions, the ETC appears suboptimal and will likely need to be modified to support proposed photosynthetic improvements and to maintain energy balance. Here, I derive photochemical equations to quantify the transport capacity and the corresponding reduction level based on the kinetics of redox reactions along the ETC. Using these theoretical equations and measurements from diverse C3/C4 species across environments, I identify several strategies that can simultaneously increase the transport capacity and decrease the reduction level of the ETC. These strategies include increasing the abundances of reaction centers, cytochrome b6f complexes, and mobile electron carriers, improving their redox kinetics, and decreasing the fraction of secondary quinone-nonreducing photosystem II reaction centers. I also shed light on several previously unexplained experimental findings regarding the physiological impacts of the abundances of the cytochrome b6f complex and plastoquinone. The model developed, and the insights generated from it facilitate the development of sustainable photosynthetic systems for greater crop yields.

摘要

通过遗传改良光合作用是提高作物产量的关键策略,以满足在气候变暖背景下快速增长的全球人口对粮食和燃料日益增长的需求。许多光合作用器官的组件已经成为遗传改良的目标,以提高光合作用。这些改良能否成功转化为在波动环境中提高植物生产力,将取决于电子传递链(ETC)是否能够在不面临过度还原和光损伤风险的情况下支持增加的电子传递速率。在目前的大气条件下,ETC 似乎不太理想,可能需要进行修改以支持拟议的光合作用改良并维持能量平衡。在这里,我根据 ETC 中氧化还原反应的动力学,推导出光化学方程来量化传输能力和相应的还原水平。利用这些理论方程和来自不同环境的 C3/C4 物种的测量数据,我确定了几种可以同时增加 ETC 传输能力和降低还原水平的策略。这些策略包括增加反应中心、细胞色素 b6f 复合物和可移动电子载体的丰度,改善它们的氧化还原动力学,并降低非还原型二次醌类光合系统 II 反应中心的比例。我还阐明了几个关于细胞色素 b6f 复合物和质体醌丰度对生理影响的先前未解释的实验结果。所开发的模型以及从中得出的见解,为提高作物产量的可持续光合作用系统的发展提供了便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa77/10663115/2c7534b15dc0/kiad490f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验