Suppr超能文献

基于机器学习算法构建及验证耐多药肺炎克雷伯菌感染风险预测模型——一项多中心回顾性研究

Construction and validation of a predictive model for the risk of multidrug-resistant Klebsiella pneumoniae infection based on machine learning algorithms - a multicenter retrospective study.

作者信息

Sun Tao, Wang Pei-Pei, Liu Jun-Ji, An Zhen, Zhao Jun-Rong, Liu Jun

机构信息

Department of Hematology and Oncology Laboratory, The Central Hospital of Shaoyang, Shaoyang, Hunan Province, China.

Department of Laboratory Medicine, Jiakang Renyi Hospital, Shaoyang, Hunan Province, China.

出版信息

Eur J Clin Microbiol Infect Dis. 2025 May 10. doi: 10.1007/s10096-025-05152-2.

Abstract

OBJECTIVE

The development of a reliable predictive model for Multi-drug-resistant Klebsiella pneumoniae (MDR-KP) infections is imperative for the timely identification of at-risk individuals.

METHODS

This study analyzed data from 3,554 patients with KP infection at multiple hospitals. By comparing six machine learning algorithms (Logistic Regression(LR), Efficient Neural Network (ENet), Decision Tree(DT), MultiLayer Perceptron(MLP), Support Vector Machine(SVM), and Extreme Gradient Boosting(XGBoost)), we constructed and validated the prediction model. Furthermore, the model interpretation was conducted through SHapley Additive exPlanations (SHAP) analysis. Subsequently, nomograms were developed to estimate the risk of MDR-KP infection in hospitalized individuals. Finally, the association between independent variables and the risk of MDR-KP acquisition was elucidated through Restricted Cubic Spline (RCS) analysis.

RESULTS

The results of the multivariable logistic regression analysis indicated that C-reactive protein (CRP), Uric Acid (UA), Urea, Platelet (PLT), Hemoglobin (HB), Red blood cell counts (RBC), Age, and Gender were identified as independent risk factors. We incorporated these independent risk factors into six machine learning, and found that the XGBoost-based model exhibited superior performance compared to other machine learning algorithms, achieving a recall of 0.732, an F1 score of 0.707, and an AUC of 0.777. Furthermore, the SHAP method highlighted Urea, UA, and PLT as the primary decision factors predicted by the machine learning model, and the RCS analysis revealed a nonlinear relationship between Age, CRP, RBC, HB, UA, UREA, and the risk of MDR-KP infection.

CONCLUSION

This study has developed an effective risk prediction model for MDR-KP infection. The model has the potential to assist healthcare providers in early identification of high-risk patients, enabling timely implementation of preventive and therapeutic interventions.

摘要

目的

开发一种可靠的耐多药肺炎克雷伯菌(MDR-KP)感染预测模型对于及时识别高危个体至关重要。

方法

本研究分析了多家医院3554例肺炎克雷伯菌感染患者的数据。通过比较六种机器学习算法(逻辑回归(LR)、高效神经网络(ENet)、决策树(DT)、多层感知器(MLP)、支持向量机(SVM)和极端梯度提升(XGBoost)),我们构建并验证了预测模型。此外,通过SHapley加性解释(SHAP)分析进行模型解释。随后,绘制列线图以估计住院个体发生MDR-KP感染的风险。最后,通过受限立方样条(RCS)分析阐明自变量与获得MDR-KP风险之间的关联。

结果

多变量逻辑回归分析结果表明,C反应蛋白(CRP)、尿酸(UA)、尿素、血小板(PLT)、血红蛋白(HB)、红细胞计数(RBC)、年龄和性别被确定为独立危险因素。我们将这些独立危险因素纳入六种机器学习算法中,发现基于XGBoost的模型与其他机器学习算法相比表现更优,召回率为0.732,F1分数为0.707,曲线下面积(AUC)为0.777。此外,SHAP方法突出显示尿素、UA和PLT是机器学习模型预测的主要决策因素,RCS分析揭示年龄、CRP、RBC、HB、UA、尿素与MDR-KP感染风险之间存在非线性关系。

结论

本研究开发了一种有效的MDR-KP感染风险预测模型。该模型有可能帮助医疗保健提供者早期识别高危患者,从而能够及时实施预防和治疗干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验