Hua Shuhui, Li Chuan, Wang Yuanlong, Liang YiZhi, Xu Shanling, Kong Jian, Gong Hongyan, Dong Rui, Lin Yanan, Lin Xu, Bi Yanlin, Wang Bin
Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.
The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong Province, China.
BMC Anesthesiol. 2025 Jul 30;25(1):375. doi: 10.1186/s12871-025-03259-9.
With the aging demographic on the rise, we're seeing a spike in the occurrence of postoperative delirium (POD). Our research aims to delve into the connection between plasma bilirubin levels and postoperative delirium, with the goal of crafting ten machine learning (ML) models capable of predicting POD instances.
This study enrolled 621 elderly patients after knee/hip surgery. We used the Confusion Assessment Method (CAM) to assess whether participants had POD. Univariate binary logistic regression analysis and restricted cubic spline (RCS) analysis were used to evaluate the association between plasma total bilirubin and POD. This study further investigated whether cerebrospinal fluid plays some role in the relationship between bilirubin and POD using mediated causal analysis. Subsequently, we employed ten machine learning algorithms to train and develop the predictive models: Logistic Regression (LR), Support Vector Machine (SVM), Gradient Boosting Model (GBM), Neural Network (NN), Random Forest (RF), Xgboost, K-Nearest Neighbors (KNN), AdaBoost, LightGBM, and CatBoost. The performance of the models was evaluated by the area under the receiver operating characteristic curve (AUROC), Brier score, accuracy, sensitivity, specificity, precision, F1 score, calibration curve, decision curve, clinical impact curve, and confusion matrix. In addition, the model was interpreted through Shapley additive interpretation (SHAP) analysis to clarify the importance of bilirubin in the model and its decision-making basis.
Univariate binary logistic regression analysis revealed that plasma total bilirubin was associated with POD. Furthermore, the RCS analysis illustrated there was no nonlinear relationship between total bilirubin and POD. Mediation analysis indicted that T-tau mediated the effect of total bilirubin on POD. Total bilirubin and other features(age, educational level, BMI, history of diabetes, ASA, albumin, Aβ42, T-tau and P-tau) were used to construct ML models. Compared with other ML algorithms, NN showed better performance, with an AUC of 0.973 (95% CI (0.959-0.987)) in the test set. In addition, the SHAP method determines that age and education are the main determinants that affect the prediction of ML models.
Plasma total bilirubin was identified as a preoperative risk factor for postoperative delirium (POD). Among ten ML models, the Neural Network (NN) incorporating total bilirubin showed the best predictive performance for POD.
Clinical Registration No. ChiCTR2000033439. Registration data:2020.06.01.
随着人口老龄化加剧,术后谵妄(POD)的发生率呈上升趋势。我们的研究旨在深入探讨血浆胆红素水平与术后谵妄之间的联系,目标是构建10个能够预测POD病例的机器学习(ML)模型。
本研究纳入了621例接受膝关节/髋关节手术后的老年患者。我们使用意识模糊评估法(CAM)来评估参与者是否发生POD。采用单因素二元逻辑回归分析和限制性立方样条(RCS)分析来评估血浆总胆红素与POD之间的关联。本研究进一步使用中介因果分析来探究脑脊液在胆红素与POD关系中是否起作用。随后,我们采用10种机器学习算法来训练和开发预测模型:逻辑回归(LR)、支持向量机(SVM)、梯度提升模型(GBM)、神经网络(NN)、随机森林(RF)、Xgboost、K近邻(KNN)、AdaBoost、LightGBM和CatBoost。通过受试者操作特征曲线下面积(AUROC)、Brier评分、准确率、灵敏度、特异度、精确度、F1评分、校准曲线、决策曲线、临床影响曲线和混淆矩阵来评估模型的性能。此外,通过Shapley加性解释(SHAP)分析对模型进行解释,以阐明胆红素在模型中的重要性及其决策依据。
单因素二元逻辑回归分析显示血浆总胆红素与POD相关。此外,RCS分析表明总胆红素与POD之间不存在非线性关系。中介分析表明T-tau介导了总胆红素对POD的影响。使用总胆红素和其他特征(年龄、教育水平、体重指数、糖尿病史、美国麻醉医师协会分级、白蛋白、Aβ42、T-tau和P-tau)构建ML模型。与其他ML算法相比,NN表现出更好的性能,在测试集中的AUC为0.973(95%CI(0.959-0.987))。此外,SHAP方法确定年龄和教育是影响ML模型预测的主要决定因素。
血浆总胆红素被确定为术后谵妄(POD)的术前危险因素。在1