Suppr超能文献

一种用于羟基锚定键转换的自组装复合结构设计可实现高效稳定的钙钛矿太阳能电池。

A Self-Assembling Composite Structural Design for the Conversion of Hydroxyl-Anchored Bonds Obtains High Efficient and Stable Perovskite Solar Cells.

作者信息

Zhang Haiyang, Yang Yan, Zhao Jianming, Yang Hanjun, Lu Ying, Xie Yihuan, Yao Shuo, Chu Zhaoyang, Huang Changjian, Huang Zengqi, Zhou Mingbin, Wan Qixin, Li Qi, Zhao Tianxiang, Lin Qianying, Yang Xia, Guo Rui, Xiong Zhihua, Hu Xiaotian

机构信息

School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.

出版信息

Adv Mater. 2025 Jul;37(28):e2420155. doi: 10.1002/adma.202420155. Epub 2025 May 9.

Abstract

Self-assembled monolayers (SAMs) serve as the hole-transporting layer (HTL) in perovskite solar cells, yet their instability on indium tin oxide (ITO) substrates poses a challenge in practical. The typical SAMs are susceptible to solvents during the perovskite layer deposition process which can result in being washed or dislodged, thereby impeding the formation of a dense SAM. Here, a novel guanidine-modified polyurethane siloxane elastomers is synthesized to enhance the anchoring capability of SAMs on ITO, which exhibits strong interactions with [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) SAMs, to co-construct a self-assembled composite structure (SACS). By utilizing this anchor strategy, the weakly bonded MeO-2PACz adhering to ITO can be converted into a strongly bonded form, thereby curtailing the migration of MeO-2PACz on the ITO surface during the spin-coating process, as well as inhibiting shedding that may occur due to solvent washing during the device preparation process. SACS SAMs heighten the charge collection ability of SAMs and suppress interfacial recombination, as well as enhance the growth of the upper perovskite layer. Finally, the SACS-based SAMs device with a power conversion efficiency of 26.37%. The unencapsulated device based on SACS SAMs can be stored for at least 5000 h with little degradation in performance.

摘要

自组装单分子层(SAMs)在钙钛矿太阳能电池中用作空穴传输层(HTL),然而它们在氧化铟锡(ITO)衬底上的不稳定性在实际应用中构成了挑战。典型的SAMs在钙钛矿层沉积过程中易受溶剂影响,这可能导致被冲洗或脱落,从而阻碍致密SAMs的形成。在此,合成了一种新型胍改性聚氨酯硅氧烷弹性体,以增强SAMs在ITO上的锚固能力,其与[2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸(MeO-2PACz)SAMs表现出强相互作用,共同构建自组装复合结构(SACS)。通过采用这种锚固策略,附着在ITO上的弱键合MeO-2PACz可转化为强键合形式,从而减少旋涂过程中MeO-2PACz在ITO表面的迁移,以及抑制器件制备过程中因溶剂冲洗可能发生的脱落。SACS SAMs提高了SAMs的电荷收集能力,抑制了界面复合,同时促进了上层钙钛矿层的生长。最终,基于SACS SAMs的器件功率转换效率达到26.37%。基于SACS SAMs的未封装器件可存储至少5000小时,性能几乎没有下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验