Zhao Huiyao, Zhang Xiwen, Zhang Kai, Zhang Wenfeng, Zhou Rui, Wei Yanbei, Qu Jun, Chen Yangdi, Li Hongyu, Zong Xueping, Zhang Shantao, Liang Mao, Huang Yuelong, Li Haijin, Yang Yingguo, Long Wei, Wang Yang, Yang Shangfeng
School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China.
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202504237. doi: 10.1002/anie.202504237. Epub 2025 Jul 22.
Carbazole-based self-assembled monolayers (SAMs) have been commonly used as a single-component hole transport layer (HTL) in inverted perovskite solar cells (PSCs), but suffer from facile π-π stacking and self-aggregations in solution and consequently poor anchoring ability with the atop perovskite layer. Herein, we developed a synergistic SAM (syn-SAM) strategy through blending a non-planar molecule 3,3-(4-amino-4H-1,2,4-triazole-3,5-diyl)-dibenzo acid (ABT) bearing multiple anchoring sites with the commonly used Me-4PACz SAM. The coexistence of these two components leverages π-π interactions and hydrogen bonding to mitigate aggregation effects, affording dense and uniform SAM, thereby enhancing anchoring at the perovskite buried interface and alleviating interfacial charge recombination. ABT incorporation further helps to mitigating tensile strain in perovskite film. Additionally, this strategy offers advantages of multi-device compatibility. The single-junction champion inverted PSC devices based on syn-SAM deliver power conversion efficiencies (PCEs) of 25.75% (certified 25.45%) and 22.76% (area: 0.105 cm) for 1.56 and 1.68 eV bandgap perovskites, respectively. Moreover, this approach is beneficial for the monolithic perovskite/silicon tandem solar cells based on fully textured surfaces of heterojunction (HJT) silicon bottom cells, affording PCEs of 31.56% (area: 1.07 cm) and 26.57% (area: 20.06 cm). All devices exhibit excellent long-term storage and thermal stability even under non-encapsulated conditions.
咔唑基自组装单分子层(SAMs)通常被用作倒置钙钛矿太阳能电池(PSC)中的单组分空穴传输层(HTL),但在溶液中容易发生π-π堆积和自聚集,因此与顶部钙钛矿层的锚固能力较差。在此,我们通过将带有多个锚固位点的非平面分子3,3-(4-氨基-4H-1,2,4-三唑-3,5-二基)-二苯甲酸(ABT)与常用的Me-4PACz SAM混合,开发了一种协同SAM(syn-SAM)策略。这两种组分的共存利用π-π相互作用和氢键来减轻聚集效应,形成致密且均匀的SAM,从而增强在钙钛矿掩埋界面处的锚固作用并减轻界面电荷复合。ABT的掺入进一步有助于减轻钙钛矿薄膜中的拉伸应变。此外,该策略具有多器件兼容性的优势。基于syn-SAM的单结冠军倒置PSC器件,对于带隙为1.56和1.68 eV的钙钛矿,功率转换效率(PCE)分别为25.75%(认证值25.45%)和22.76%(面积:0.105 cm)。此外,这种方法有利于基于异质结(HJT)硅底部电池完全纹理化表面的单片钙钛矿/硅串联太阳能电池,其PCE分别为31.56%(面积:1.07 cm)和26.57%(面积:20.06 cm)。即使在非封装条件下,所有器件也都表现出出色的长期存储和热稳定性。