Suppr超能文献

沿分解代谢-合成代谢轴的癌细胞代谢的计算建模

Computational modeling of cancer cell metabolism along the catabolic-anabolic axes.

作者信息

Villela-Castrejon Javier, Levine Herbert, Kaipparettu Benny A, Onuchic José N, George Jason T, Jia Dongya

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.

Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, USA.

出版信息

NPJ Syst Biol Appl. 2025 May 10;11(1):46. doi: 10.1038/s41540-025-00525-x.

Abstract

Abnormal metabolism is a hallmark of cancer, this was initially recognized nearly a century ago through the observation of aerobic glycolysis in cancer cells. Mitochondrial respiration can also drive tumor progression and metastasis. However, it remains largely unclear the mechanisms by which cancer cells mix and match different metabolic modalities (oxidative/reductive) and leverage various metabolic ingredients (glucose, fatty acids, glutamine) to meet their bioenergetic and biosynthetic needs. Here, we formulate a phenotypic model for cancer metabolism by coupling master gene regulators (AMPK, HIF-1, MYC) with key metabolic substrates (glucose, fatty acids, and glutamine). The model predicts that cancer cells can acquire four metabolic phenotypes: a catabolic phenotype characterized by vigorous oxidative processes-O, an anabolic phenotype characterized by pronounced reductive activities-W, and two complementary hybrid metabolic states-one exhibiting both high catabolic and high anabolic activity-W/O, and the other relying mainly on glutamine oxidation-Q. Using this framework, we quantified gene and metabolic pathway activity by developing scoring metrics based on gene expression. We validated the model-predicted gene-metabolic pathway association and the characterization of the four metabolic phenotypes by analyzing RNA-seq data of tumor samples from TCGA. Strikingly, carcinoma samples exhibiting hybrid metabolic phenotypes are often associated with the worst survival outcomes relative to other metabolic phenotypes. Our mathematical model and scoring metrics serve as a platform to quantify cancer metabolism and study how cancer cells adapt their metabolism upon perturbations, which ultimately could facilitate an effective treatment targeting cancer metabolic plasticity.

摘要

异常代谢是癌症的一个标志,这在近一个世纪前通过观察癌细胞中的有氧糖酵解首次被认识到。线粒体呼吸也可驱动肿瘤进展和转移。然而,癌细胞如何混合和匹配不同的代谢方式(氧化/还原)并利用各种代谢成分(葡萄糖、脂肪酸、谷氨酰胺)来满足其生物能量和生物合成需求,在很大程度上仍不清楚。在此,我们通过将主要基因调节因子(AMPK、HIF-1、MYC)与关键代谢底物(葡萄糖、脂肪酸和谷氨酰胺)耦合,构建了一个癌症代谢的表型模型。该模型预测癌细胞可获得四种代谢表型:一种以活跃氧化过程为特征的分解代谢表型——O,一种以明显还原活性为特征的合成代谢表型——W,以及两种互补的混合代谢状态——一种同时表现出高分解代谢和高合成代谢活性——W/O,另一种主要依赖谷氨酰胺氧化——Q。利用这个框架,我们通过基于基因表达开发评分指标来量化基因和代谢途径活性。我们通过分析来自TCGA的肿瘤样本的RNA测序数据,验证了模型预测的基因-代谢途径关联以及四种代谢表型的特征。令人惊讶的是,相对于其他代谢表型,表现出混合代谢表型的癌样本往往与最差的生存结果相关。我们的数学模型和评分指标作为一个平台,用于量化癌症代谢并研究癌细胞在受到干扰时如何调整其代谢,这最终可能有助于针对癌症代谢可塑性的有效治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5603/12065808/1ee161f8e147/41540_2025_525_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验