Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.
Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77005.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3909-3918. doi: 10.1073/pnas.1816391116. Epub 2019 Feb 7.
Metabolic plasticity enables cancer cells to switch their metabolism phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) during tumorigenesis and metastasis. However, it is still largely unknown how cancer cells orchestrate gene regulation to balance their glycolysis and OXPHOS activities. Previously, by modeling the gene regulation of cancer metabolism we have reported that cancer cells can acquire a stable hybrid metabolic state in which both glycolysis and OXPHOS can be used. Here, to comprehensively characterize cancer metabolic activity, we establish a theoretical framework by coupling gene regulation with metabolic pathways. Our modeling results demonstrate a direct association between the activities of AMPK and HIF-1, master regulators of OXPHOS and glycolysis, respectively, with the activities of three major metabolic pathways: glucose oxidation, glycolysis, and fatty acid oxidation. Our model further characterizes the hybrid metabolic state and a metabolically inactive state where cells have low activity of both glycolysis and OXPHOS. We verify the model prediction using metabolomics and transcriptomics data from paired tumor and adjacent benign tissue samples from a cohort of breast cancer patients and RNA-sequencing data from The Cancer Genome Atlas. We further validate the model prediction by in vitro studies of aggressive triple-negative breast cancer (TNBC) cells. The experimental results confirm that TNBC cells can maintain a hybrid metabolic phenotype and targeting both glycolysis and OXPHOS is necessary to eliminate their metabolic plasticity. In summary, our work serves as a platform to symmetrically study how tuning gene activity modulates metabolic pathway activity, and vice versa.
代谢可塑性使癌细胞在肿瘤发生和转移过程中能够在糖酵解和氧化磷酸化(OXPHOS)之间切换代谢表型。然而,目前仍不清楚癌细胞如何协调基因调控来平衡其糖酵解和 OXPHOS 活性。以前,通过模拟癌症代谢的基因调控,我们已经报告说,癌细胞可以获得一种稳定的混合代谢状态,其中糖酵解和 OXPHOS 都可以被利用。在这里,为了全面描述癌症代谢活性,我们通过将基因调控与代谢途径相结合,建立了一个理论框架。我们的建模结果表明,AMPK 和 HIF-1 的活性之间存在直接关联,AMPK 和 HIF-1 分别是 OXPHOS 和糖酵解的主要调控因子,与三种主要代谢途径的活性有关:葡萄糖氧化、糖酵解和脂肪酸氧化。我们的模型进一步描述了混合代谢状态和代谢不活跃状态,其中细胞的糖酵解和 OXPHOS 活性都很低。我们使用来自乳腺癌患者队列的配对肿瘤和相邻良性组织样本的代谢组学和转录组学数据以及来自癌症基因组图谱的 RNA-seq 数据来验证模型预测。我们通过体外研究侵袭性三阴性乳腺癌(TNBC)细胞进一步验证了模型预测。实验结果证实,TNBC 细胞可以维持混合代谢表型,并且靶向糖酵解和 OXPHOS 两者对于消除其代谢可塑性是必要的。总之,我们的工作为研究如何通过调节基因活性来调节代谢途径活性,以及反之亦然,提供了一个平台。