Suppr超能文献

用于可编程液体拓扑结构和微操纵的3D打印脊柱。

3D-printed spines for programmable liquid topographies and micromanipulation.

作者信息

Delens Megan, Franckart Axel, Harris Daniel M, Vandewalle Nicolas

机构信息

GRASP, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium.

Harris Lab, School of Engineering, Center for Fluid Mechanics, Brown University, Providence, RI, 02912, USA.

出版信息

Nat Commun. 2025 May 10;16(1):4348. doi: 10.1038/s41467-025-59483-x.

Abstract

Manipulating floating objects, whether solid or liquid, from microscopic to mesoscopic sizes, is crucial in various microfluidics and microfabrication applications. While capillary menisci naturally self-assemble and transport floating particles, their shapes and sizes are limited by the properties of the fluid and the objects involved. We herein harness the superposition of capillary menisci to curve liquid interfaces controllably. By using 3D-printed spines piercing the interface, we can finely adjust height gradients across the liquid surface to create specific liquid topographies. Thus, our method becomes a powerful tool for manipulating floating objects into programmable paths. Combining experimental demonstrations, numerical simulations, and theoretical modeling, we study the liquid elevation created by specific spine dispositions and the three-dimensional manipulation of submillimetric particles. Multiple examples showcase the method's potential applications, including sorting and capturing particles, which could pave the way for cleaning fluid interfaces.

摘要

在各种微流控和微制造应用中,操纵从微观到介观尺寸的漂浮物体(无论是固体还是液体)至关重要。虽然毛细弯月面会自然地自组装并运输漂浮颗粒,但其形状和尺寸受到所涉及流体和物体特性的限制。我们在此利用毛细弯月面的叠加来可控地弯曲液体界面。通过使用穿透界面的3D打印脊,我们可以精细地调整液体表面的高度梯度,以创建特定的液体形貌。因此,我们的方法成为将漂浮物体操纵到可编程路径的强大工具。结合实验演示、数值模拟和理论建模,我们研究了特定脊布置产生的液体升高以及亚毫米级颗粒的三维操纵。多个示例展示了该方法的潜在应用,包括对颗粒进行分类和捕获,这可能为清洁流体界面铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a4e/12065812/02242d2fc548/41467_2025_59483_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验