Meyer Conary, Arizzi Alessandra, Henson Tanner, Aviran Sharon, Longo Marjorie L, Wang Aijun, Tan Cheemeng
Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
Center for Surgical Bioengineering, Department of Surgery, University of California Davis School of Medicine, Davis, USA.
Nat Commun. 2025 May 10;16(1):4363. doi: 10.1038/s41467-025-59471-1.
Protein synthesis in natural cells involves intricate interactions between chemical environments, protein-protein interactions, and protein machinery. Replicating such interactions in artificial and cell-free environments can control the precision of protein synthesis, elucidate complex cellular mechanisms, create synthetic cells, and discover new therapeutics. Yet, creating artificial synthesis environments, particularly for membrane proteins, is challenging due to the poorly defined chemical-protein-lipid interactions. Here, we introduce MEMPLEX (Membrane Protein Learning and Expression), which utilizes machine learning and a fluorescent reporter to rapidly design artificial synthesis environments of membrane proteins. MEMPLEX generates over 20,000 different artificial chemical-protein environments spanning 28 membrane proteins. It captures the interdependent impact of lipid types, chemical environments, chaperone proteins, and protein structures on membrane protein synthesis. As a result, MEMPLEX creates new artificial environments that successfully synthesize membrane proteins of broad interest but previously intractable. In addition, we identify a quantitative metric, based on the hydrophobicity of the membrane-contacting amino acids, that predicts membrane protein synthesis in artificial environments. Our work allows others to rapidly study and resolve the "dark" proteome using predictive generation of artificial chemical-protein environments. Furthermore, the results represent a new frontier in artificial intelligence-guided approaches to creating synthetic environments for protein synthesis.
天然细胞中的蛋白质合成涉及化学环境、蛋白质-蛋白质相互作用和蛋白质机制之间的复杂相互作用。在人工和无细胞环境中复制这种相互作用可以控制蛋白质合成的精度,阐明复杂的细胞机制,创建合成细胞,并发现新的治疗方法。然而,由于化学-蛋白质-脂质相互作用的定义不明确,创建人工合成环境,特别是对于膜蛋白来说具有挑战性。在这里,我们引入了MEMPLEX(膜蛋白学习与表达),它利用机器学习和荧光报告基因来快速设计膜蛋白的人工合成环境。MEMPLEX生成了超过20000种不同的人工化学-蛋白质环境,涵盖28种膜蛋白。它捕捉了脂质类型、化学环境、伴侣蛋白和蛋白质结构对膜蛋白合成的相互依赖影响。结果,MEMPLEX创建了新的人工环境,成功地合成了广泛关注但以前难以处理的膜蛋白。此外,我们基于与膜接触的氨基酸的疏水性确定了一种定量指标,该指标可预测人工环境中的膜蛋白合成。我们的工作使其他人能够通过预测性生成人工化学-蛋白质环境来快速研究和解析“暗”蛋白质组。此外,这些结果代表了人工智能指导的为蛋白质合成创建合成环境方法的一个新前沿。