Suppr超能文献

基于机器学习,利用可穿戴设备和智能手机数据中的数字表型预测不宁腿综合征

Machine learning-based prediction of restless legs syndrome using digital phenotypes from wearables and smartphone data.

作者信息

Jeong Jingyeong, Jeon Yoonseo, Kim Hyungju, Yeom Ji Won, Shin Yu-Bin, Kim Sujin, Pack Seung Pil, Lee Heon-Jeong, Cheong Taesu, Cho Chul-Hyun

机构信息

Korea University College of Medicine, Seoul, Republic of Korea.

School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2025 May 10;15(1):16349. doi: 10.1038/s41598-025-01215-8.

Abstract

Restless legs syndrome (RLS) is a relatively common neurosensory disorder that causes an irresistible urge for leg movement. RLS causes sleep disturbances and reduced quality of life, but accurate diagnosis remains challenging owing to the reliance on subjective reporting. This study aimed to propose a predictive machine learning model based on digital phenotypes for RLS diagnosis. Self-reported lifestyle data were integrated via a smartphone application with objective biometric data from wearable devices to obtain 85 features processed based on circadian rhythms. Prediction models used these features to distinguish between the non-RLS (International Restless Legs Study Group Severity Rating Scale [IRLS] score ≤ 10) and RLS symptom groups (10 < IRLS ≤ 20) and between the non-RLS and severe RLS symptom groups (IRLS > 20). The RF model showed the highest performance in predicting the RLS symptom group and XGB model in the severe RLS symptom group. For the RLS symptom group, when using only wearable device data, the AUC, accuracy, precision, recall, and F1 scores were 0.78, 0.70, 0.66, 0.84, and 0.74, respectively, while these scores combining wearable device and application data were 0.86, 0.76, 0.68, 1.00, and 0.81, respectively. For the severe RLS symptom group, when using only wearable device data, XGB achieved AUC, accuracy, precision, recall, and F1 scores of 0.66, 0.84, 0.89, 0.93, and 0.91, respectively, while these scores combining wearable device and application data were 0.70, 0.80, 0.88, 0.90, and 0.89, respectively. Diverse digital phenotypes clinically associated with RLS were processed based on circadian rhythms to demonstrate the potential of digital phenotyping for RLS prediction. Thus, our study establishes early detection and personalized management of RLS.Trial Registration: Clinical Research Information Service (CRIS) KCT0009175 (Registration data: Feb-15-2024) ( https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=M&pageSize=10&page=undefined&seq=26133&status=5&seq_group=26133 ).

摘要

不宁腿综合征(RLS)是一种相对常见的神经感觉障碍,会导致无法抑制的腿部运动冲动。RLS会导致睡眠障碍并降低生活质量,但由于依赖主观报告,准确诊断仍然具有挑战性。本研究旨在提出一种基于数字表型的预测性机器学习模型用于RLS诊断。通过智能手机应用程序将自我报告的生活方式数据与可穿戴设备的客观生物特征数据整合,以获得基于昼夜节律处理的85个特征。预测模型使用这些特征来区分非RLS组(国际不宁腿研究组严重程度评分量表[IRLS]得分≤10)和RLS症状组(10<IRLS≤20),以及非RLS组和严重RLS症状组(IRLS>20)。随机森林(RF)模型在预测RLS症状组方面表现最佳,而极端梯度提升(XGB)模型在严重RLS症状组中表现最佳。对于RLS症状组,仅使用可穿戴设备数据时,曲线下面积(AUC)、准确率、精确率、召回率和F1分数分别为0.78、0.70、0.66、0.84和0.74,而结合可穿戴设备和应用程序数据时,这些分数分别为0.86、0.76、0.68、1.00和0.81。对于严重RLS症状组,仅使用可穿戴设备数据时,XGB的AUC、准确率、精确率、召回率和F1分数分别为0.66、0.84、0.89、0.93和0.91,而结合可穿戴设备和应用程序数据时,这些分数分别为0.70、0.80、0.88、0.90和0.89。基于昼夜节律处理了与RLS临床相关的多种数字表型,以证明数字表型在RLS预测中的潜力。因此,我们的研究确立了RLS的早期检测和个性化管理。试验注册:临床研究信息服务(CRIS)KCT0009175(注册数据:2024年2月15日)(https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=M&pageSize=10&page=undefined&seq=26133&status=5&seq_group=26133)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/12065804/ef9271aca330/41598_2025_1215_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验