Kordani Marjan, Bagheritabar Mohsen, Ahmadianfar Iman, Samadi-Koucheksaraee Arvin
Department of Hydrology and Water Resources, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Department of Electrical Engineering, University of Cincinnati, Cincinnati, OH, 45221-0030, USA.
Sci Rep. 2025 May 10;15(1):16313. doi: 10.1038/s41598-025-99341-w.
Permeability index (PI) and magnesium absorption ratio (MAR) are both primary irrigation water quality indicators (IWQI) used to evaluate the efficacy of agricultural water supplies. This is considered a complex environmental issue to reliably forecast IWQI parameters without its appropriate time series and limited input sequences. Hence, this research develops an innovative hybrid intelligence framework for the first time to forecast the PI and MAR indices at the Karun River, Iran. The proposed framework includes a new hybrid machine learning (ML) model based on generalized ridge regression and kernel ridge regression with a regularized locally weighted (GRKR) method. This research developed an optimized multivariate variational mode decomposition (OMVMD) technique, optimized by the Runge-Kutta algorithm (RUN), to decompose the input variables. The light gradient boosting machine model (LGBM) is also implemented to select the influential input variables. The main contribution of the intelligence framework lies in developing a new hybrid ML model based on GRKR coupled with OMVMD. Five water quality parameters from the Karun River at two stations (Ahvaz and Molasani) over 40 years are used to forecast the PI and MAR indices monthly. Statistical metrics confirmed that the proposed OMVMD-GRKR model, concerning the best efficiency in the Ahvaz (R = 0.987, RMSE = 0.761, and U95% = 2.108) and Molasani (R = 0.963, RMSE = 1.379, and U95% = 3.828) stations, outperformed the OMVMD and simple-based methods such as ridge regression (Ridge), least squares support vector machine (LSSVM), deep random vector functional link (DRVFL), and deep extreme learning machine (DELM). For this reason, the suggested OMVMD-GRKR model serves as a valuable framework for predicting IWQI parameters.
渗透率指数(PI)和镁吸收比(MAR)都是用于评估农业供水效率的主要灌溉水质指标(IWQI)。在没有适当的时间序列和有限的输入序列的情况下,可靠地预测IWQI参数被认为是一个复杂的环境问题。因此,本研究首次开发了一种创新的混合智能框架,用于预测伊朗卡伦河的PI和MAR指数。所提出的框架包括一种基于广义岭回归和核岭回归以及正则化局部加权(GRKR)方法的新型混合机器学习(ML)模型。本研究开发了一种通过龙格 - 库塔算法(RUN)优化的优化多变量变分模态分解(OMVMD)技术,用于分解输入变量。还实施了轻梯度提升机模型(LGBM)来选择有影响的输入变量。智能框架的主要贡献在于开发了一种基于GRKR并结合OMVMD的新型混合ML模型。利用卡伦河两个站点(阿瓦士和莫拉萨尼)40年来的五个水质参数,每月预测PI和MAR指数。统计指标证实,所提出的OMVMD - GRKR模型在阿瓦士站(R = 0.987,RMSE = 0.761,U95% = 2.108)和莫拉萨尼站(R = 0.963,RMSE = 1.379,U95% = 3.828)具有最佳效率,优于OMVMD和基于简单方法的模型,如岭回归(Ridge)、最小二乘支持向量机(LSSVM)、深度随机向量功能链接(DRVFL)和深度极限学习机(DELM)。因此,所建议的OMVMD - GRKR模型是预测IWQI参数的有价值框架。