Suppr超能文献

一种混合框架:使用基于数学的微调优化的奇异值分解和核岭回归,用于增强河流水位预测。

A hybrid framework: singular value decomposition and kernel ridge regression optimized using mathematical-based fine-tuning for enhancing river water level forecasting.

作者信息

Ahmadianfar Iman, Farooque Aitazaz Ahsan, Ali Mumtaz, Jamei Mehdi, Jamei Mozhdeh, Yaseen Zaher Mundher

机构信息

Department of Civil Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE, Canada.

出版信息

Sci Rep. 2025 Mar 4;15(1):7596. doi: 10.1038/s41598-025-90628-6.

Abstract

The precise monitoring and timely alerting of river water levels represent critical measures aimed at safeguarding the well-being and assets of residents in river basins. Achieving this objective necessitates the development of highly accurate river water level forecasts. Hence, a novel hybrid model is provided, incorporating singular value decomposition (SVD) in conjunction with kernel-based ridge regression (SKRidge), multivariate variational mode decomposition (MVMD), and the light gradient boosting machine (LGBM) as a feature selection method, along with the Runge-Kutta optimization (RUN) algorithm for parameter optimization. The L-SKRidge model combines the advantages of both the SKRidge and ridge regression techniques, resulting in a more robust and accurate forecasting tool. By incorporating the linear relationship and regularization techniques of ridge regression with the flexibility and adaptability of the SKRidge algorithm, the L-SKRidge model is able to capture complex patterns in the data while also preventing overfitting. The L-SKRidge method is applied to forecast water levels in the Brook and Dunk Rivers in Canada for two distinct time horizons, specifically one- and three days ahead. Statistical criteria and data visualization tools indicates that the L-SKRidge model has superior efficiency in both the Brook (achieving R = 0.970 and RMSE = 0.051) and Dunk (with R = 0.958 and RMSE = 0.039) Rivers, surpassing the performance of other hybrid and standalone frameworks. The results show that the L-SKRidge method has an acceptable ability to provide accurate water level predictions. This capability can be of significant use to academics and policymakers as they develop innovative approaches for hydraulic control and advance sustainable water resource management.

摘要

对河流水位进行精确监测和及时预警是保护流域居民福祉和资产的关键措施。要实现这一目标,就需要开发高度精确的河流水位预报。因此,本文提出了一种新型混合模型,该模型将奇异值分解(SVD)与基于核的岭回归(SKRidge)、多变量变分模态分解(MVMD)以及作为特征选择方法的轻梯度提升机(LGBM)相结合,并采用龙格-库塔优化(RUN)算法进行参数优化。L-SKRidge模型结合了SKRidge和岭回归技术的优点,形成了一个更强大、更准确的预报工具。通过将岭回归的线性关系和正则化技术与SKRidge算法的灵活性和适应性相结合,L-SKRidge模型能够捕捉数据中的复杂模式,同时还能防止过拟合。L-SKRidge方法被应用于预测加拿大布鲁克河和邓克河在两个不同时间范围内的水位,具体为提前一天和三天。统计标准和数据可视化工具表明,L-SKRidge模型在布鲁克河(R = 0.970,RMSE = 0.051)和邓克河(R = 0.958,RMSE = 0.039)中均具有卓越的效率,超过了其他混合模型和独立框架的性能。结果表明,L-SKRidge方法具有提供准确水位预测的可接受能力。这种能力对于学者和政策制定者在开发创新的水力控制方法和推进可持续水资源管理方面具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e792/11880535/ff013741c031/41598_2025_90628_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验