Deng Xin, Huo Huaxiang, Ai Lijiao, Xu Daijiang, Li Chenhui
Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing 401329, China.
The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Sensors (Basel). 2025 May 5;25(9):2922. doi: 10.3390/s25092922.
Motor imagery (MI) is a crucial research field within the brain-computer interface (BCI) domain. It enables patients with muscle or neural damage to control external devices and achieve movement functions by simply imagining bodily motions. Despite the significant clinical and application value of MI-BCI technology, accurately decoding high-dimensional and low signal-to-noise ratio (SNR) electroencephalography (EEG) signals remains challenging. Moreover, traditional deep learning approaches exhibit limitations in processing EEG signals, particularly in capturing the intrinsic correlations between electrode channels and long-distance temporal dependencies. To address these challenges, this research introduces a novel end-to-end decoding network that integrates convolutional neural networks (CNNs) and a Swin Transformer, aiming at enhancing the classification accuracy of the MI paradigm in EEG signals. This approach transforms EEG signals into a three-dimensional data structure, utilizing one-dimensional convolutions along the temporal dimension and two-dimensional convolutions across the EEG electrode distribution for initial spatio-temporal feature extraction, followed by deep feature exploration using a 3D Swin Transformer module. Experimental results show that on the BCI Competition IV-2a dataset, the proposed method achieves 83.99% classification accuracy, which is significantly better than the existing deep learning methods. This finding underscores the efficacy of combining a CNN and Swin Transformer in a 3D data space for processing high-dimensional, low-SNR EEG signals, offering a new perspective for the future development of MI-BCI. Future research could further explore the applicability of this method across various BCI tasks and its potential clinical implementations.
运动想象(MI)是脑机接口(BCI)领域中的一个关键研究方向。它能使肌肉或神经受损的患者通过简单地想象身体动作来控制外部设备并实现运动功能。尽管MI-BCI技术具有重大的临床和应用价值,但准确解码高维度、低信噪比(SNR)的脑电图(EEG)信号仍然具有挑战性。此外,传统的深度学习方法在处理EEG信号时存在局限性,尤其是在捕捉电极通道之间的内在相关性和长距离时间依赖性方面。为应对这些挑战,本研究引入了一种新颖的端到端解码网络,该网络集成了卷积神经网络(CNN)和Swin Transformer,旨在提高EEG信号中MI范式的分类准确率。这种方法将EEG信号转换为三维数据结构,沿时间维度利用一维卷积,在EEG电极分布上利用二维卷积进行初始时空特征提取,然后使用3D Swin Transformer模块进行深度特征探索。实验结果表明,在BCI竞赛IV-2a数据集上,所提出的方法实现了83.99%的分类准确率,显著优于现有的深度学习方法。这一发现强调了在三维数据空间中结合CNN和Swin Transformer来处理高维度、低SNR的EEG信号的有效性,为MI-BCI的未来发展提供了新的视角。未来的研究可以进一步探索该方法在各种BCI任务中的适用性及其潜在的临床应用。