Suppr超能文献

低收入和中等收入国家幼儿发展评估工具的心理测量特性:一项系统综述

Psychometric properties of early childhood development assessment tools in low- and middle-income countries: a systematic review.

作者信息

Bliznashka Lilia, Hentschel Elizabeth, Ali Nazia Binte, Hunt Xanthe, Neville Sarah Elizabeth, Olney Deanna, Pitchik Helen O, Roy Aditi, Seiden Jonathan, Solís-Cordero Katherine, Thapa Aradhana, Jeong Joshua

机构信息

Nutrition, Diets, and Health Unit, International Food Policy Research Institute, Washington, District of Columbia, USA

Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, UK.

出版信息

BMJ Open. 2025 May 11;15(5):e096365. doi: 10.1136/bmjopen-2024-096365.

Abstract

OBJECTIVE

Valid and reliable measurement of early childhood development (ECD) is critical for monitoring and evaluating ECD-related policies and programmes. Although ECD tools developed in high-income countries may be applicable to low- and middle-income countries (LMICs), directly applying them in LMICs can be problematic without psychometric evidence for new cultures and contexts. Our objective was to systematically appraise available evidence on the psychometric properties of tools used to measure ECD in LMIC.

DESIGN

A systematic review following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines.

DATA SOURCES

MEDLINE, Embase, PubMed, PsycInfo, SciELO and BVS were searched from inception to February 2025.

ELIGIBILITY CRITERIA

We included studies that examined the reliability, validity, and measurement invariance of tools assessing ECD in children 0-6 years of age living in LMICs.

DATA EXTRACTION AND SYNTHESIS

Each study was independently screened by two researchers and data extracted by one randomly assigned researcher. Risk of bias was assessed using a checklist developed by the study team assessing bias due to training/administration, selective reporting and missing data. Results were synthesised narratively by country, location, age group at assessment and developmental domain.

RESULTS

A total of 160 articles covering 117 tools met inclusion criteria. Most reported psychometric properties were internal consistency reliability (n=117, 64%), concurrent validity (n=81, 45%), convergent validity (n=74, 41%), test-retest reliability (n=73, 40%) and structural validity (n=72, 40%). Measurement invariance was least commonly reported (n=16, 9%). Most articles came from Brazil, China, India and South Africa. Most psychometric evidence was from urban (n=92, 51%) or urban-rural (n=41, 23%) contexts. Study samples focused on children aged 6-17.9 or 48-59.9 months. The most assessed developmental domains were language (n=111, 61%), motor (n=104, 57%) and cognitive (n=82, 45%). Bias due to missing data was most common.

CONCLUSIONS

Psychometric evidence is fragmented, limited and heterogeneous. More rigorous psychometric analyses, especially on measurement invariance, are needed to establish the quality and accuracy of ECD tools for use in LMICs.

PROSPERO REGISTRATION NUMBER

CRD42022372305.

摘要

目的

对幼儿发展(ECD)进行有效且可靠的测量对于监测和评估与ECD相关的政策及项目至关重要。尽管在高收入国家开发的ECD工具可能适用于低收入和中等收入国家(LMICs),但在没有针对新文化和新背景的心理测量学证据的情况下,直接在LMICs应用这些工具可能会出现问题。我们的目标是系统地评估关于LMICs中用于测量ECD的工具的心理测量学特性的现有证据。

设计

遵循系统评价和Meta分析的首选报告项目指南进行系统评价。

数据来源

检索MEDLINE、Embase、PubMed、PsycInfo、SciELO和BVS,检索时间从数据库创建至2025年2月。

纳入标准

我们纳入了检验评估0 - 6岁生活在LMICs儿童的ECD工具的信度、效度和测量不变性的研究。

数据提取与合成

每项研究由两名研究人员独立筛选,一名随机分配的研究人员提取数据。使用研究团队制定的清单评估偏倚风险,该清单评估因培训/管理、选择性报告和缺失数据导致的偏倚。结果按国家、地点、评估时的年龄组和发育领域进行叙述性综合。

结果

共有160篇文章涵盖117种工具符合纳入标准。报告的大多数心理测量学特性为内部一致性信度(n = 117,64%)、同时效度(n = 81,45%)、收敛效度(n = 74,41%)、重测信度(n = 73,40%)和结构效度(n = 72,40%)。测量不变性的报告最少(n = 16,9%)。大多数文章来自巴西、中国、印度和南非。大多数心理测量学证据来自城市(n = 92,51%)或城乡结合部(n = 41,23%)地区。研究样本主要集中在6 - 17.9个月或48 - 59.9个月的儿童。评估最多的发育领域是语言(n = 111,61%)、运动(n = 104,57%)和认知(n = 82,45%)。因缺失数据导致的偏倚最为常见。

结论

心理测量学证据零散、有限且异质性强。需要更严格的心理测量学分析,尤其是关于测量不变性的分析,以确定用于LMICs的ECD工具的质量和准确性。

PROSPERO注册号:CRD42022372305。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2955/12067826/2a97cf193cc8/bmjopen-15-5-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验