Le Thi Thu, Sellschopp Kai, Murgia Fabrizio, Garden Anna Louise, Bordignon Simone, Embs Jan Peter, Chierotti Michele Remo, Schökel Alexander, Karimi Fahim, Jerabek Paul, Klassen Thomas, Pistidda Claudio
Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, D-21502, Geesthacht, Germany.
Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy.
Small. 2025 Sep;21(36):e2502943. doi: 10.1002/smll.202502943. Epub 2025 May 12.
Ionic conductivity is one of the key parameters in designing advanced solid-state batteries and energy storage materials. This study presents the first observation of high ionic conductivity in the newly developed mixed cation amide solid solution, RbCsNH, within the RbNH-CsNH system. In particular, the solid solution formed shows an unexpectedly high ionic conductivity that is four orders of magnitude higher than that of the individual compounds, RbNH and CsNH. This substantial improvement is ascribed to the Rb/Cs cation exchange process. This exchange significantly stabilizes the cubic structure, thereby enhancing ionic conductivity in the solid solution compared to the parent compounds. A combined experimental and computational study using quasielastic neutron scattering (QENS) and density functional theory (DFT) elucidates the mechanism of Rb/Cs ion migration in solid solution. The findings indicate intrinsically correlated with the reorientation dynamics of [NH]⁻ anions, which activates and facilitates Rb⁺/Cs⁺ ion transport within the lattice via the paddlewheel mechanism. A deep understanding of the crystal structure, anion reorientation dynamics, and cation migration mechanisms is crucial for advancing the ionic conductivity and hydrogen storage characteristics of these amide materials.
离子电导率是设计先进固态电池和储能材料的关键参数之一。本研究首次观察到在新开发的RbNH - CsNH体系混合阳离子酰胺固溶体RbCsNH中具有高离子电导率。特别地,所形成的固溶体显示出出乎意料的高离子电导率,比单个化合物RbNH和CsNH的离子电导率高四个数量级。这种显著的改善归因于Rb/Cs阳离子交换过程。这种交换显著稳定了立方结构,从而与母体化合物相比提高了固溶体中的离子电导率。使用准弹性中子散射(QENS)和密度泛函理论(DFT)的联合实验和计算研究阐明了固溶体中Rb/Cs离子迁移的机制。研究结果表明与[NH]⁻阴离子的重新取向动力学内在相关,其通过桨轮机制激活并促进晶格内Rb⁺/Cs⁺离子传输。深入了解这些酰胺材料的晶体结构、阴离子重新取向动力学和阳离子迁移机制对于提高其离子电导率和储氢特性至关重要。