Maniaci Antonino, Lavalle Salvatore, Gagliano Caterina, Lentini Mario, Masiello Edoardo, Parisi Federica, Iannella Giannicola, Cilia Nicole Dalia, Salerno Valerio, Cusumano Giacomo, La Via Luigi
Faculty of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy.
ASP Ragusa, Hospital Giovanni Paolo II, 97100 Ragusa, Italy.
Life (Basel). 2024 Oct 1;14(10):1248. doi: 10.3390/life14101248.
With profound effects on patient care, the role of artificial intelligence (AI) in radiomics has become a disruptive force in contemporary medicine. Radiomics, the quantitative feature extraction and analysis from medical images, offers useful imaging biomarkers that can reveal important information about the nature of diseases, how well patients respond to treatment and patient outcomes. The use of AI techniques in radiomics, such as machine learning and deep learning, has made it possible to create sophisticated computer-aided diagnostic systems, predictive models, and decision support tools. The many uses of AI in radiomics are examined in this review, encompassing its involvement of quantitative feature extraction from medical images, the machine learning, deep learning and computer-aided diagnostic (CAD) systems approaches in radiomics, and the effect of radiomics and AI on improving workflow automation and efficiency, optimize clinical trials and patient stratification. This review also covers the predictive modeling improvement by machine learning in radiomics, the multimodal integration and enhanced deep learning architectures, and the regulatory and clinical adoption considerations for radiomics-based CAD. Particular emphasis is given to the enormous potential for enhancing diagnosis precision, treatment personalization, and overall patient outcomes.
人工智能(AI)在放射组学中的作用对患者护理产生了深远影响,已成为当代医学中的一股变革力量。放射组学是从医学图像中进行定量特征提取和分析,它提供了有用的成像生物标志物,能够揭示有关疾病本质、患者对治疗的反应情况以及患者预后的重要信息。在放射组学中使用AI技术,如机器学习和深度学习,使得创建复杂的计算机辅助诊断系统、预测模型和决策支持工具成为可能。本综述探讨了AI在放射组学中的多种应用,包括其在从医学图像中进行定量特征提取方面的作用、放射组学中的机器学习、深度学习和计算机辅助诊断(CAD)系统方法,以及放射组学和AI对改善工作流程自动化和效率、优化临床试验和患者分层的影响。本综述还涵盖了机器学习在放射组学中对预测模型的改进、多模态整合和增强的深度学习架构,以及基于放射组学的CAD的监管和临床应用考量。特别强调了其在提高诊断精度、治疗个性化和整体患者预后方面的巨大潜力。