Suppr超能文献

一种用于预测成人急性呼吸窘迫综合征重症监护病房患者死亡风险的可解释机器学习模型。

An interpretable machine learning model for predicting mortality risk in adult ICU patients with acute respiratory distress syndrome.

作者信息

Li Wanyi, Zhou Hangyu, Zou Yingxue

机构信息

Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China.

College of Statistics, Shanxi University of Finance and Economics, Taiyuan, Shanxi, China.

出版信息

Front Med (Lausanne). 2025 Apr 25;12:1580345. doi: 10.3389/fmed.2025.1580345. eCollection 2025.

Abstract

BACKGROUND

Acute respiratory distress syndrome (ARDS) is a clinical syndrome triggered by pulmonary or extra-pulmonary factors with high mortality and poor prognosis in the ICU. The aim of this study was to develop an interpretable machine learning predictive model to predict the risk of death in patients with ARDS in the ICU.

METHODS

The datasets used in this study were obtained from two independent databases: Medical Information Mart for Intensive Care (MIMIC) IV and eICU Collaborative Research Database (eICU-CRD). This study used eight machine learning algorithms to construct predictive models. Recursive feature elimination with cross-validation is used to screen features, and cross-validation-based Bayesian optimization is used to filter the features used to find the optimal combination of hyperparameters for the model. The Shapley additive explanations (SHAP) method is used to explain the decision-making process of the model.

RESULTS

A total of 5,732 patients with severe ADRS were included in this study for analysis, of which 1,171 patients (20.4%) did not survive. Among the eight models, XGBoost performed the best; AUC-ROC was 0.887 (95% CI: 0.863-0.909) and AUPRC was 0.731 (95% CI: 0.673-0.783).

CONCLUSION

We developed a machine learning-based model for predicting the risk of death of critically ill ARDS patients in the ICU, and our model can effectively identify high-risk ARDS patients at an early stage, thereby supporting clinical decision-making, facilitating early intervention, and improving patient prognosis.

摘要

背景

急性呼吸窘迫综合征(ARDS)是一种由肺内或肺外因素引发的临床综合征,在重症监护病房(ICU)中死亡率高且预后差。本研究的目的是开发一种可解释的机器学习预测模型,以预测ICU中ARDS患者的死亡风险。

方法

本研究中使用的数据集来自两个独立的数据库:重症监护医学信息集市(MIMIC)IV和电子ICU协作研究数据库(eICU-CRD)。本研究使用八种机器学习算法构建预测模型。采用带交叉验证的递归特征消除法筛选特征,并使用基于交叉验证的贝叶斯优化法筛选用于为模型寻找超参数最优组合的特征。使用夏普利值附加解释(SHAP)方法解释模型的决策过程。

结果

本研究共纳入5732例重度ARDS患者进行分析,其中1171例患者(20.4%)未存活。在这八个模型中,XGBoost表现最佳;曲线下面积(AUC-ROC)为0.887(95%置信区间:0.863-0.909),精确率-召回率曲线下面积(AUPRC)为0.731(95%置信区间:0.673-0.783)。

结论

我们开发了一种基于机器学习的模型,用于预测ICU中重症ARDS患者的死亡风险,且我们的模型能够在早期有效识别高危ARDS患者,从而支持临床决策,促进早期干预并改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验