Suppr超能文献

大学生睡眠质量预测模型的新见解:基于LASSO的睡眠评估

Novel insight into prediction model for sleep quality among college students: a LASSO-derived sleep evaluation.

作者信息

Yao Ling, Chen Qingquan, Yang Kang, Zheng Zhihua, Chen Zhihan, Wang Danna, Xia Yining, Chen Dingquan, Chen Lufeng

机构信息

The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.

The Graduate School of Fujian Medical University, Fuzhou, Fujian, China.

出版信息

Front Psychiatry. 2025 Apr 25;16:1585732. doi: 10.3389/fpsyt.2025.1585732. eCollection 2025.

Abstract

BACKGROUND

Sleep disturbance has become a significant concern among college students, as it can lead to various mental and physical disorders. This study aims to provide a fresh perspective by developing and validating a predictive model for sleep quality among college students.

METHODS

Data from 20,645 college students in Fujian Province, China, collected between 5th April and 16th April 2022, were analyzed. Participants completed the Pittsburgh Sleep Quality Index (PSQI) scale, a self-designed general data questionnaire, and a sleep quality influencing factor questionnaire. Multinomial logistic regression, LASSO regression, and Boruta feature selection methods were utilized to select relevant variables. The data were then divided into a training-testing set (70%) and an independent validation set (30%) using stratified sampling. Six machine learning techniques, including artificial neural network (ANN), decision tree, gradient-boosting tree, k-nearest neighbor, naïve Bayes, and random forest, were developed and validated. Finally, an online sleep evaluation website was established based on the best-fitting prediction model.

RESULTS

The mean global PSQI score was 6.02 ± 3.112, with a sleep disturbance prevalence of 28.9% (defined as a global PSQI score > 7). The LASSO regression model identified eight predictors: age, specialty, respiratory history, coffee consumption, staying up late, prolonged online activity, sudden changes, and impatient closed-loop management. Among the evaluated models, the ANN demonstrated superior performance with an area under the receiver operating characteristic curve (AUC) of 0.713 (95% CI: 0.696-0.730), accuracy of 0.669 (95% CI: 0.669-0.669), sensitivity of 0.682 (95% CI: 0.699-0.665), specificity of 0.637 (95% CI: 0.665-0.610). Decision curve analysis and clinical impact analysis further confirmed the model's clinical utility.

CONCLUSIONS

This study developed a prediction model for sleep disturbance among college students using a LASSO regression and ANN, incorporating eight predictors. The model can serve as an intuitive and practical tool for predicting sleep quality and supporting effective management and healthcare on college campuses.

摘要

背景

睡眠障碍已成为大学生中的一个重要问题,因为它可能导致各种身心疾病。本研究旨在通过开发和验证大学生睡眠质量预测模型提供新的视角。

方法

分析了2022年4月5日至4月16日期间收集的来自中国福建省20645名大学生的数据。参与者完成了匹兹堡睡眠质量指数(PSQI)量表、一份自行设计的一般数据问卷和一份睡眠质量影响因素问卷。采用多项逻辑回归、LASSO回归和Boruta特征选择方法来选择相关变量。然后使用分层抽样将数据分为训练测试集(70%)和独立验证集(30%)。开发并验证了六种机器学习技术,包括人工神经网络(ANN)、决策树、梯度提升树、k近邻、朴素贝叶斯和随机森林。最后,基于最佳拟合预测模型建立了一个在线睡眠评估网站。

结果

PSQI全球平均得分为6.02±3.112,睡眠障碍患病率为28.9%(定义为全球PSQI得分>7)。LASSO回归模型确定了八个预测因素:年龄、专业、呼吸病史、咖啡摄入量、熬夜、长时间上网活动、突然变化和急躁闭环管理。在所评估的模型中,人工神经网络表现出卓越性能,受试者工作特征曲线下面积(AUC)为0.713(95%CI:0.696 - 0.730),准确率为0.669(95%CI:0.669 - 0.669),灵敏度为0.682(95%CI:0.699 - 0.665),特异性为0.637(95%CI:0.665 - 0.610)。决策曲线分析和临床影响分析进一步证实了该模型的临床实用性。

结论

本研究使用LASSO回归和人工神经网络开发了大学生睡眠障碍预测模型,纳入了八个预测因素。该模型可作为预测睡眠质量以及支持大学校园有效管理和医疗保健的直观实用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验