Suppr超能文献

在阿尔茨海默病小鼠模型中建立与学习和记忆相关的功能连接模型。

Modeling functional connectivity with learning and memory in a mouse model of Alzheimer's disease.

作者信息

Fadel Lindsay, Hipskind Elizabeth, Pedersen Steen E, Romero Jonathan, Ortiz Caitlyn, Shin Eric, Samee Md Abul Hassan, Pautler Robia G

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States.

出版信息

Front Neuroimaging. 2025 Apr 25;4:1558759. doi: 10.3389/fnimg.2025.1558759. eCollection 2025.

Abstract

INTRODUCTION

Functional connectivity (FC) is a metric of how different brain regions interact with each other. Although there have been some studies correlating learning and memory with FC, there have not yet been, to date, studies that use machine learning (ML) to explain how FC changes can be used to explain behavior not only in healthy mice, but also in mouse models of Alzheimer's Disease (AD). Here, we investigated changes in FC and their relationship to learning and memory in a mouse model of AD across disease progression.

METHODS

We assessed the APP/PS1 mouse model of AD and wild-type controls at 3-, 6-, and 10-months of age. Using resting state functional magnetic resonance imaging (rs-fMRI) in awake, unanesthetized mice, we assessed FC between 30 brain regions. ML models were then used to define interactions between neuroimaging readouts with learning and memory performance.

RESULTS

In the APP/PS1 mice, we identified a pattern of hyperconnectivity across all three time points, with 47 hyperconnected regions at 3 months, 46 at 6 months, and 84 at 10 months. Notably, FC changes were also observed in the Default Mode Network, exhibiting a loss of hyperconnectivity over time. Modeling revealed functional connections that support learning and memory performance differ between the 6- and 10-month groups.

DISCUSSION

These ML models show potential for early disease detection by identifying connectivity patterns associated with cognitive decline. Additionally, ML may provide a means to begin to understand how FC translates into learning and memory performance.

摘要

引言

功能连接性(FC)是衡量不同脑区之间如何相互作用的一个指标。尽管已经有一些研究将学习和记忆与功能连接性联系起来,但迄今为止,尚未有研究使用机器学习(ML)来解释功能连接性的变化如何不仅能解释健康小鼠的行为,还能解释阿尔茨海默病(AD)小鼠模型的行为。在这里,我们研究了AD小鼠模型在疾病进展过程中功能连接性的变化及其与学习和记忆的关系。

方法

我们在3个月、6个月和10个月大时评估了AD的APP/PS1小鼠模型和野生型对照。在清醒、未麻醉的小鼠中使用静息态功能磁共振成像(rs-fMRI),我们评估了30个脑区之间的功能连接性。然后使用机器学习模型来定义神经影像学读数与学习和记忆表现之间的相互作用。

结果

在APP/PS1小鼠中,我们在所有三个时间点都发现了一种高连接性模式,3个月时有47个高连接区域,6个月时有46个,10个月时有84个。值得注意的是,在默认模式网络中也观察到了功能连接性的变化,随着时间的推移表现出高连接性的丧失。建模显示,支持学习和记忆表现的功能连接在6个月和10个月的组之间有所不同。

讨论

这些机器学习模型通过识别与认知衰退相关的连接模式,显示出早期疾病检测的潜力。此外,机器学习可能提供一种手段,开始理解功能连接性如何转化为学习和记忆表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fe1/12062036/ddb9e2196c40/fnimg-04-1558759-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验