Zubair Mohammed, Ghubaish Ali, Unal Devrim, Al-Ali Abdulla, Reimann Thomas, Alinier Guillaume, Hammoudeh Mohammad, Qadir Junaid
Kindi Center for Computing Research, Qatar University, Doha P.O. Box 2713, Qatar.
Department of Computer Science, Qatar University, Doha P.O. Box 2713, Qatar.
Sensors (Basel). 2022 Oct 28;22(21):8280. doi: 10.3390/s22218280.
Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97-99.5% based on the F1 scores.
由于不断采用各种各样的医疗物联网(IoMT)设备和应用程序,智能健康带来了不断扩大的攻击面。IoMT是智能城市解决方案的一种常见方法,可为诸如智能医疗保健等关键基础设施带来长期效益。智能城市中的许多IoMT设备使用蓝牙技术进行短距离通信,因为它具有灵活性、低资源消耗和便捷性。由于智能医疗保健应用依赖于分布式控制优化,人工智能(AI)和深度学习(DL)提供了减轻网络攻击的有效方法。本文提出了一种基于分散式、预测性DL的流程,以自主检测和阻止恶意流量,并为IoMT设备中的网络攻击提供端到端防御。此外,我们提供了针对IoMT网络的基于蓝牙攻击的数据集。据我们所知,这是第一个针对经典蓝牙和低功耗蓝牙(BLE)的入侵检测数据集。使用BlueTack数据集,我们设计了一种使用深度学习技术的多层入侵检测方法。我们提出了一种分散式架构,用于在可能部署在智能城市中的智能医疗保健系统的边缘节点上部署此入侵检测系统。基于F1分数,所提出的多层入侵检测模型的性能在97%至99.5%的范围内。