Suppr超能文献

将时间卷积网络与元启发式优化相结合以实现准确的软件缺陷预测。

Integrating temporal convolutional networks with metaheuristic optimization for accurate software defect prediction.

作者信息

Abdelaziz Ahmed, Mahmoud Alia Nabil, Santos Vitor, Freire Mario M

机构信息

Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, Lisboa, Portugal.

Information System Department, Higher Technological Institute, HTI, Cairo, Egypt.

出版信息

PLoS One. 2025 May 12;20(5):e0319562. doi: 10.1371/journal.pone.0319562. eCollection 2025.

Abstract

The increasing importance of deep learning in software development has greatly improved software quality by enabling the efficient identification of defects, a persistent challenge throughout the software development lifecycle. This study seeks to determine the most effective model for detecting defects in software projects. It introduces an intelligent approach that combines Temporal Convolutional Networks (TCN) with Antlion Optimization (ALO). TCN is employed for defect detection, while ALO optimizes the network's weights. Two models are proposed to address the research problem: (a) a basic TCN without parameter optimization and (b) a hybrid model integrating TCN with ALO. The findings demonstrate that the hybrid model significantly outperforms the basic TCN in multiple performance metrics, including area under the curve, sensitivity, specificity, accuracy, and error rate. Moreover, the hybrid model surpasses state-of-the-art methods, such as Convolutional Neural Networks, Gated Recurrent Units, and Bidirectional Long Short-Term Memory, with accuracy improvements of 21.8%, 19.6%, and 31.3%, respectively. Additionally, the proposed model achieves a 13.6% higher area under the curve across all datasets compared to the Deep Forest method. These results confirm the effectiveness of the proposed hybrid model in accurately detecting defects across diverse software projects.

摘要

深度学习在软件开发中日益重要,通过实现对缺陷的高效识别,极大地提高了软件质量,而缺陷识别是贯穿软件开发生命周期的一个长期挑战。本研究旨在确定检测软件项目中缺陷的最有效模型。它引入了一种将时间卷积网络(TCN)与蚁狮优化(ALO)相结合的智能方法。TCN用于缺陷检测,而ALO用于优化网络权重。为解决该研究问题,提出了两种模型:(a)未进行参数优化的基本TCN;(b)将TCN与ALO集成的混合模型。研究结果表明,在包括曲线下面积、灵敏度、特异性、准确率和错误率等多个性能指标方面,混合模型显著优于基本TCN。此外,混合模型超越了诸如卷积神经网络、门控循环单元和双向长短期记忆等当前最先进的方法,准确率分别提高了21.8%、19.6%和31.3%。此外,与深度森林方法相比,所提出的模型在所有数据集中的曲线下面积高出13.6%。这些结果证实了所提出的混合模型在准确检测不同软件项目中的缺陷方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f0/12068722/bb1a0929dbd1/pone.0319562.g001.jpg

相似文献

1
Integrating temporal convolutional networks with metaheuristic optimization for accurate software defect prediction.
PLoS One. 2025 May 12;20(5):e0319562. doi: 10.1371/journal.pone.0319562. eCollection 2025.
2
Research on Indoor Environment Prediction of Pig House Based on OTDBO-TCN-GRU Algorithm.
Animals (Basel). 2024 Mar 11;14(6):863. doi: 10.3390/ani14060863.
3
Application of TCN-biGRU neural network in [Formula: see text] concentration prediction.
Environ Sci Pollut Res Int. 2023 Dec;30(56):119506-119517. doi: 10.1007/s11356-023-30354-6. Epub 2023 Nov 6.
5
A novel deep learning ensemble model based on two-stage feature selection and intelligent optimization for water quality prediction.
Environ Res. 2023 May 1;224:115560. doi: 10.1016/j.envres.2023.115560. Epub 2023 Feb 25.
6
Deep Neural Networks for the Classification of Pure and Impure Strawberry Purees.
Sensors (Basel). 2020 Feb 23;20(4):1223. doi: 10.3390/s20041223.
7
A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.
Comput Biol Med. 2022 Jul;146:105560. doi: 10.1016/j.compbiomed.2022.105560. Epub 2022 Apr 27.
10
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.

本文引用的文献

1
Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production.
Discov Imaging. 2025;2(1):2. doi: 10.1007/s44352-025-00006-1. Epub 2025 Mar 10.
2
A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI.
PLoS One. 2024 Jul 11;19(7):e0307112. doi: 10.1371/journal.pone.0307112. eCollection 2024.
4
A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization.
Arch Comput Methods Eng. 2023;30(2):765-797. doi: 10.1007/s11831-022-09817-5. Epub 2022 Sep 21.
5
Principal component based support vector machine (PC-SVM): a hybrid technique for software defect detection.
Cluster Comput. 2021;24(3):2581-2595. doi: 10.1007/s10586-021-03282-8. Epub 2021 Apr 16.
6
Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.
ScientificWorldJournal. 2016;2016:2401496. doi: 10.1155/2016/2401496. Epub 2016 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验