Lewis Natasha S, Zedlitz Silja, Ausserwöger Hannes, McCall Patrick M, Hubatsch Lars, Nousch Marco, Ruer-Gruß Martine, Hoege Carsten, Jülicher Frank, Eckmann Christian R, Knowles Tuomas P J, Hyman Anthony A
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
Max Planck School Matter to Life, Heidelberg 69120, Germany.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2412218122. doi: 10.1073/pnas.2412218122. Epub 2025 May 12.
MEX-5 regulates the formation and dissolution of P granules in embryos, yet the thermodynamic basis of its activity remains unclear. Here, using a time-resolved in vitro reconstitution system, we show that MEX-5 dissolves preassembled liquid-like PGL-3/RNA condensates by altering RNA availability and shifting the phase boundary. We develop a microfluidic assay to systematically analyze how MEX-5 influences phase separation. By measuring the contribution of PGL-3 to phase separation, we show that MEX-5 reduces the free energy of PGL-3, shifting the equilibrium toward dissolution. Our findings provide a quantitative framework for understanding how RNA-binding proteins modulate condensate stability and demonstrate the power of microfluidics in precisely mapping phase transitions.
MEX-5调节胚胎中P颗粒的形成和溶解,但其活性的热力学基础仍不清楚。在这里,我们使用时间分辨的体外重组系统表明,MEX-5通过改变RNA的可用性和移动相界来溶解预先组装的液状PGL-3/RNA凝聚物。我们开发了一种微流控测定法,以系统地分析MEX-5如何影响相分离。通过测量PGL-3对相分离的贡献,我们表明MEX-5降低了PGL-3的自由能,使平衡向溶解方向移动。我们的研究结果为理解RNA结合蛋白如何调节凝聚物稳定性提供了一个定量框架,并证明了微流控技术在精确绘制相变方面的强大作用。